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1 Introduction

Quite often, the algorithms trade off time (CPU cycles) and space (memory). If more memory is
spent, then the same problem can be solved faster; and the opposite, with more CPU the same problem
can be solved with less memory. For that reason, the algorithms in this notes specify the complexity
in terms of time and occasionally in terms of space.
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2 Divide and Conquer

The technique divides a problem into a set of independent subproblems of the same kind. Each of
them is solved and they are merged into a solution. For such approach, the following theorem can be
used to compute the complexity.

Theorem 1. Let a ≥ 1 and b > 1 be the constants, let f(n) be a function, and let T (n) be defined on
the nonnegative integers by the reccurence

T (n) = aT (
n

b
) + f(n)

where we interpret n/b to mean either ⌊n/b⌋ or ⌈n/b⌉. Then T (n) can be bounded asymptotically as
follows:

1. If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ
(
nlogb a

)
2. If f(n) = Θ

(
nlogb a

)
, then T (n) = Θ

(
nlogb a lg n

)
3. If f(n) = Ω

(
nlogb a+ϵ

)
for some constant ϵ > 0 and if af(n/b) ≤ cf(n) for some constant c < 1

and all sufficiently large n, then T (n) = Θ (f(n))

2.1 Towers of Hanoi

Given a three rods and set of n ≥ 1 disks of different sizes on the first rod, move them all to the
third rod by applying the following rules:

1. At each moment, a disk can be on top only of a bigger disk.
2. Only one disk can be moved at a time.
3. Only disk from the top of a rod can be moved.

The algorithm is trivial if number of disks is 1 as well if it’s equal to 2. For n = 3, the problem
can be recursively solved for size of 2 for the middle rod, then third disk is moved to the third rod and
problem is again recursively solved for the disks at the middle rod. Similarly, for n > 3, the middle
rod can be used as auxiliary to solve the subproblem of size n − 1. Then n-th disk is moved to the
third rod and n− 1 disks from the middle rod are moved to the third one by using the same recursive
solution for the subproblem of size n− 1.

Number of moves in such solution is 2n−1, where n is number of disks. That can be easily prooved
by using induction by n.
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Algorithm 1 Towers of Hanoi

Input
n Number of tiles.
s Source where to begin moving.
t Target where to end moving.

Output
Tiles moved from the source stick to the target.

Complexity
O(n2).

procedure HanoiTowers(n, s, t)
if n = 1 then

Move(s, t)
else if n = 2 then

a = Third(s, t)
Move(s, a)
Move(s, t)
Move(a, t)

else if n ≥ 3 then
a = Third(s, t)
Solve(n− 1, s, a)
Move(s, t)
Solve(n− 1, a, t)

procedure Third(s, t)
if s ̸= 1 and t ̸= 1 then return 1

if s ̸= 2 and t ̸= 2 then return 2

if s ̸= 3 and t ̸= 3 then return 3
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3 Dynamic programming

Solution of the dynamic problem must be parametrized in a such way that subproblems are of the
same kind. That is, if S is an optimal solution for the problem with certain parameters (i.e value V
of the problem is optimal), then the subproblem S′ obtained from S by removing some element of
the problem (and hence by reducing some solution’s parameter) is optimal too with the same set of
parameters. Parameters by which the problem is expressed and optimization performed is problem
dimension. Is the dimension unique for the problem?

Constructing hierarchy of subproblems usually involves some ordering or sorting of the problem’s
elements. When the problem is split into two subproblems, those subproblems are independent i.e.
solution of the one has no affect on the solution of the other. The optimal solution is reccurent formula
by value of the solution, so using S in that formula isn’t possible. We use S for proving an optimal
substructure, but expressing formula is always in terms of the V . S and V are parametrized with same
parameters, and V can use only problem’s elements as parameters.

If we take specific element of the problem (first, last etc.) then we can’t assume that this element
has some special position in the optimal solution. Conversely, if we take some specific element from the
optimal solution, then it can be any element from the problem, i.e. no assumption about it’s special
position in the solution can be made. There’s no sense to make optimization by some parameter. If V
is an optimal value, then it can’t be parameter of S because S and V have same parameters.

We can try split the optimal solution by removing last element (if that can be done – longest
common sequence, optimal edit transformation, knapsack problem where each item is unique). If
that isn’t possible, we can try by dividing half (matrix-chain multiplication, knapsack problem where
number of each item is infinite, maximal set of mutual compatible activities).

To calculate the solution we often need to define the space of subproblems. That is, a set of all
subproblems of the given problem, and it’s a little bit more complicated than the solution. Usually,
space of subproblems is deduced from the recurrent formula of the solution. It is used to calculate
optimal solution in bottom-up manner.

Optimal solution of each problem has its own structure, which can contain items, pairs of numbers,
stations, etc. To prove optimality it is important to find best structure of the optimal solution which is
suited for the proof of optimality. When reccurent formula is given, it is based on the optimal solution,
and it’s structure is used to express that formula.

3.1 Knapsack with infinite number of items

Knapsack of capacity C should be filled with items x1, . . . , xn. Items have capacity ck and value
vk, 1 ≤ k ≤ n, each item can be taken infinite number of times.

Let S be an optimal solution for items x1, . . . , xn and capacity C, let xk ∈ S for some k = 1, . . . , n.
Then S \xk is an optimal solution for x1, . . . , xn, C−ck. Thus, S depends on one parameter – capacity
of the knapsack. So, S = S(C) and

S(C) = S(C − ck) ∪ xk for some k = 1, . . . , n ⇒

V (C) = max{V (C − ck) + vk: 1 ≤ k ≤ n}

Space of subproblems would be {S(M): 1 ≤ M ≤ C}.
Iterative solution uses the same logic but with another loop instead the recursive calls.

3.1.1 Alternative approach

The approach above although correct, lacks of understanding about the problem dimension.
Let S be an optimal solution for items x1, . . . , xn and capacity C. If xn ∈ S, then S \xn is optimal

for x1, . . . , xn, and C − cn. If xn ̸∈ S, then S \ xn is optimal for x1, . . . , xn−1 and C. Thus, S depends
on two parameters – number of items and capacity. So, S = S(n,C) and

S(n,C) =

{
S(n,C − cn) ∪ xn, xn ∈ S
S(n− 1, C), xn ̸∈ S

⇒
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Algorithm 2 Knapsack with infinite items, the recursive solution

Input
C Knapsack capacity.
n Number of items.
i[] Items with capacities i[k].c and values i[k].v, k = 1, . . . , n.

Output
V, T Optimal solutions of subproblems.

Complexity
O(n · C).

procedure KnapsackInfItemsRec(C)
m := 0
for k := 1 to n do

if V [C − i[k].c] = 0 then
V [C − i[k].c] := KnapsackInfItemsRec(C − i[k].c)

if m < V [C − i[k].c] + i[k].v then
m := V [C − i[k].c] + i[k].v
T [C] := k

V [C] := m
return m

Read(C, n) ▷ Knapsack capacity and number of items.
Read(i[1 .. n]) ▷ Items capacities and values.
new V [1 .. C] := [0 .. 0] ▷ Indexed by a subproblem capacity, an optimal solution is determined by
stored items indexes of all subproblems from capacity zero up to the given one.
new T [1 .. C] := [0 .. 0]
KnapsackInfItemsRec(C)
Write(T, V)
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Algorithm 3 Knapsack with infinite items, the iterative solution

Input
C Knapsack capacity.
n Number of items.
i[] Items with capacities i[k].c and values i[k].v, k = 1, . . . , n.

Output
V, T Optimal solutions of subproblems.

Complexity
O(n · C).

procedure KnapsackInfItemsIter(C)
for c := 1 to C do

for k := 1 to n do
if V [c] < V [c− i[k].c] + i[k].v then

V [c] := V [c− i[k].c] + i[k].v
T [C] := k

return V [C]

Read(C, n) ▷ Knapsack capacity and number of items.
Read(i[1 .. n]) ▷ Items capacities and values.
new V [1 .. C] := [0 .. 0] ▷ Indexed by a subproblem capacity, an optimal solution is determined by
stored items indexes of all subproblems from capacity zero up to the given one.
new T [1 .. C] := [0 .. 0]
KnapsackInfItemsRec(C)
Write(T, V)

V (n,C) = max{V (n,C − cn) + vn, V (n− 1, C)}

3.2 Knapsack with one item of each kind

Knapsack of capacity C should be filled with items x1, . . . , xn, items have capacity ck and value
vk, 1 ≤ k ≤ n, each item can be taken once.

Let S be an optimal solution for items x1, . . . , xn and capacity C. If xn ∈ S, then S \xn is optimal
for x1, . . . , xn−1 and C− cn. If xn ̸∈ S, then S \xn is optimal for x1, . . . , xn−1 and C. Thus, S depends
on two parameters – number of items and capacity. So, S = S(n,C) and

S(n,C) =

{
S(n− 1, C − cn) ∪ xn, xn ∈ S
S(n− 1, C) xn ̸∈ S

⇒

V (n,C) = max{V (n− 1, C − cn) + vn, V (n− 1, C)}

Space of subproblems would be {S(k,M): 1 ≤ k ≤ n, 1 ≤ M ≤ C}.

3.3 Knapsack with fixed number of items of each kind

Knapsack of capacity C should be filled with items x1, . . . , xn, items have capacity ck and value
vk, each item can be taken tk times, 1 ≤ k ≤ n.

Let S be an optimal solution for items x1, . . . , xn, t1, . . . , tn, and capacity C. If xn ∈ S, tn > 0, then
S \xn is optimal for x1, . . . , xn, t1, . . . , tn−1, tn−1, C−cn. If xn ̸∈ S or tn = 0, then S \xn is optimal for
x1, . . . , xn, t1, . . . , tn−1, C. Thus, S depends on three parameters – number of items, number of specific
item and capacity. So, S = S(n, tn, C) and

S(n, tn, C) =

{
S(n, tn − 1, C − cn) ∪ xn, xn ∈ S ∧ tn > 0
S(n− 1, tn−1, C), xn ̸∈ S ∨ tn = 0

⇒
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Algorithm 4 Knapsack with infinite items, the alternative recursive solution

Input
C Knapsack capacity.
n Number of items.
i[] Items with capacities i[k].c and values i[k].v, k = 1, . . . , n.

Output
V, T Optimal solutions of subproblems.

Complexity
O(n · C).

procedure KnapsackInfItemsRec2(k,C)
m := 0
if V [k,C − i[k].c] = 0 then

V [k,C − i[k].c] := KnapsackInfItemsRec2(k,C − i[k].c)

m := V [k,C − i[k].c] + i[k].v
T [C] := k
if V [k − 1, C] = 0 then

V [k − 1, C] := KnapsackInfItemsRec2(k − 1, C)

if m < V [k − 1, C] then
m := V [k − 1, C]
T [C] := 0

return m

Algorithm 5 Knapsack with one item, the recursive solution

Input
C Knapsack capacity.
k First k of n items.
i[] Items with capacities i[k].c and values i[k].v, k = 1, . . . , n.

Output
V Maximal value of items for k items and capacity C.

Complexity
O(k · C).

procedure KnapsackOneItemsRec(k,C)
m1 := 0,m2 := 0
if V [k − 1, C] = 0 then

V [k − 1, C] := KnapsackOneItemsRec(k − 1, C)

m1 := V [k − 1, C] + i[k].v
if V [k − 1, C − i[k].c] = 0 then

V [k − 1, C − i[k].c] := KnapsackOneItemsRec(k − 1, C − i[k].c)

m2 := V [k − 1, C − i[k].c] + i[k].v
if m1 > m2 then

V [k,C] := m2
else

V [k,C] := m1

return V [k,C]

Read(C, n) ▷ Knapsack capacity and number of items.
Read(i[1 .. n]) ▷ Items capacities and values.
new V [1 .. n, 1 .. C] := [0 .. 0]
KnapsackOneItemsRec(n,C)
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V (n, tn, C) = max{V (n, tn − 1, C − cn) + vn, V (n− 1, tn−1, C)}

Space of subproblems would be {S(k, tk,M): 1 ≤ k ≤ n, 1 ≤ M ≤ C}.

3.4 Matrix chain product

Matrix chain product A1, . . . , An with dimensions t0 × t1, t1 × t2, . . . , tn−1 × tn, should be paren-
thesized in a such way that number of multiplications is minimal.

Suppose we have an optimal solution S : (A1 · · ·Ak)(Ak+1 · · ·An) for some k, 1 ≤ k < n. Then,
S1 : A1 · · ·Ak and S2 : Ak+1 · · ·An are optimal too. Thus, S depends on two parameters – index of the
first and last matrix in the product. So, S = S(1, n) and

S(1, n) = S(1, k) ∪ S(k, n) for some k, 1 ≤ k ≤ n ⇒

V (1, n) = max{V (1, k) + V (k, n) + tk−1tktk+1: 1 ≤ k ≤ n− 1}

Space of subproblems would be {S(i, j): 1 ≤ i ≤ j ≤ n}.

3.5 Levenshtein distance

Two words Am and Bn with given number of characters have to be transformed into each other
using minimal number of edit operations: inserting, deleting or replacing a character. For example,
cat → kat → kate → ate is transformed by replacing c with k, inserting e and deleting k. Levenshtein
distance is defined as minimum number of such edit operations.

Let S:Am → Bn be an optimal sequence of edit operations from the first to the second word. Let
o be the last edit operation (i - inserting, d - deleting or r - replacing character with the corresponding
costs ci, cd, cr). Then, S \ o must be optimal solution too. If o = i, then S \ i transforms Am into word
Bn−1, so S \ o:Am → Bn−1. S \ d transforms Am to Cn+1 (from which Bn is obtained by deleting a
char). For that reason, S \ d transforms Am−1 to Bn. Easily, one can see that S \ r:Am−1 → Bn−1.
Thus, S is depending on two parameters – length of the first and second ”subword”. So, S = S(m,n)
and

S(m,n) =


S(m,n− 1) + i, o = i
S(m− 1, n) + d, o = d
S(m− 1, n− 1) + r, o = r

⇒

V (m,n) = min{V (m,n− 1) + ci, V (m− 1, n) + cd, V (m− 1, n− 1) + cr}

Space of subproblems would be {S(i, j): 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
The algorithm is called Wagner-Fischer algorithm and goes by dynamic programming technique.

Theorem 2. Levenshtein distance d is a metric, i.e. for all strings x, y, z the following holds:

1. d(x, y) ≥ 0
2. d(x, y) = 0 ⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, y) ≤ d(x, z) + d(z, y)

Proof. The first property follows from the definition of the edit distance as number of edit operations.
For the second property, let’s proove d(x, y) = 0 ⇒ x = y. Suppose x ̸= y. Then, there exists an

optimal transformation S:x → y. From that fact it follows that d(x, y) ̸= 0 which is contradictory to
the assumption. The opposite direction x = y ⇒ d(x, y) = 0 is trivial to proove.

Third property is pretty obvious: number of optimal transformations x → y is same to number of
optimal transformations y → x (which are reversed).

To proove the fourth property, suppose that there exists string z such that d(x, z)+d(z, y) < d(x, y).
That means that edit operations on the left side of inequality are more optimal than those on the right
side of inequality, which is contradiction. QED
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Algorithm 6 Levenshtein distance with Wagner-Fischer algorithm

Input
A First word of the length m.
B Second word of the length n.

Output
V Number of edit operations to do.
S Edit operations to perform.

Complexity
O(k · C).

procedure Levenshtein(m,n)
if m = 1 and n = 1 then

▷ Transformations of strings of length 1 goes by replacing.
V [1, 1] := cr, S[1, 1] :=

′r′

return
else if m = 1 then

if V [1, n− 1] = 0 then
Levenshtein(1, n− 1)

V [1, n] := V [1, n− 1] + cd, S[1, n] :=
′d′

else if n = 1 then
if V [m− 1, 1] = 0 then

Levenshtein(m− 1, 1)

V [m, 1] := V [m− 1, 1] + ci, S[m, 1] := ′i′

else
if V [m,n− 1] = 0 then

Levenshtein(m,n− 1)

V [m,n] := V [m,n− 1] + ci, S[m,n] := ′i′

if V [m,n] > V [m− 1, n] + cd then
V [m,n] := V [m− 1, n] + cd, S[m,n] := ′d′

if V [m,n] > V [m− 1, n− 1] + cr then
V [m,n] := V [m− 1, n− 1] + c[r], S[m,n] := ′r′

Read(ci, cd, cr) ▷ Costs of edit operations.
Read([1 .. m], B[1 .. n]) ▷ Optimal solutions of subproblems.
new V [1 .. m, 1 .. n] := [0..0], S[1 .. m, 1 .. n] := [′′..′′]
Levenshtein(m,n)
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3.6 Damerau-Levenshtein distance

Damerau-Levenshtein distance adds transposition of two adjacent characters to Levenshtein dis-
tance. Transposition occurs in cases like deamon → daemon.

If S:Am → Bn is an optimal transformation and the last operation is transposition t of cost ct,
then S \ t is optimal for Am−2 → Bn−2. Thus,

S(m,n) =


S(m,n− 1) + i, o = i
S(m− 1, n) + d, o = d
S(m− 1, n− 1) + r, o = r
S(m− 2, n− 2) + t, o = t

⇒

V (m,n) = min{V (m,n− 1) + ci, V (m− 1, n) + cd, V (m− 1, n− 1) + cr, V (m− 2, n− 2) + ct}

3.7 Longest common sequence

Let Xm = (x1, . . . , xm), Y = (y1, . . . , yn) be two sequences. Find the longest common sequence of
Xm and Yn.

Suppose that S is optimal solution i.e. longest common sequence of Xm and Yn. If xm = yn, then
S \ xm is optimal for Xm−1 and Yn−1. If xm ̸= yn, then S \ xm is better solution of the solutions for
Xm−1, Yn and Xm, Yn−1, which are optimal too. Thus, S is depending of two parameters – length of
the subsequence of X and Y . So, S = S(m,n) and:

S(m,n) =

{
S(m− 1, n− 1) ∪ xm, xm = yn
best of S(m− 1, n), S(m,n− 1), xm ̸= yn

⇒

V (m,n) =

{
V (m− 1, n− 1) + 1, xm = yn
max{V (m− 1, n), V (m,n− 1)}, xm ̸= yn

Space of subproblems would be {S(i, j): 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

3.8 Maximal set of activites

Let a1, . . . , an be the activites with starting and finishing times, sk and fk, 1 ≤ k ≤ n. Find the
maximal subset of mutual compatible activites.

Suppose that S is an optimal solution, let ak ∈ S be an activity. S \ ak is splitted into two subsets:
S = S1 ∪ S2, S1 - activites that finish before sk, S2 - activites that start after fk. Then, S1 and S2 are
optimal too. Thus, S is depending of two parameters – starting and finishing time. So, S = S(0,∞)
with activites that start after 0 and finish before ∞ and

S(0,∞) = S(0, sk) ∪ ak ∪ S(fk,∞) for some ak = (sk, fk), 1 ≤ k ≤ n ⇒

V (0,∞) = max{V (0, sk) + 1 + V (fk,∞): 1 ≤ k ≤ n}

Space of subproblems would be {S(i, j): 0 ≤ i ≤ j ≤ ∞}.

3.9 Minimal number of halls

Let a1, . . . , an be the activites with starting and finishing times, sk and fk, 1 ≤ k ≤ n. Find the
minimal numbers of halls so all activities could be realized.

Optimal solution S is composed of the solutions for single halls, i.e. S = Sn ∪ Sn−|S1| ∪ . . . ∪
Sn−

∑n−1
k=1 |Sk|, where Sk is optimal solution for single hall and k activites. Thus, S is reduced to solve

on single halls.
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3.10 Machine jobs

Let x1, . . . , xn be jobs to be done on one machine. Each job lasts for tk time units, must be finished
before deadline dk and makes profit pk. One job at the time can be done on the machine. Find jobs
such that profit is maximal.

We can assume that d1 ≤ . . . ≤ dn; otherwise, we can renumarate jobs so this holds true. Let
S be an optimal solution for x1, . . . , xn, dn, t1 + . . . + tn. If xn ∈ S, then S \ xn is optimal for
x1, . . . , xn−1, dn−tn, t1+. . .+tn−1. If xn ̸∈ S, then S\xn is optimal for x1, . . . , xn−1, dn−1, t1+. . .+tn−1.
Thus, S depends of three parameters – number of jobs, deadline and total time for these jobs. So,
S = S(n, dn, t1 + . . .+ tn) and

S(n, dn, t1 + . . .+ tn) =

{
S(n− 1, dn − tn, t1 + . . .+ tn−1) ∪ xn, xn ∈ S
S(n− 1, dn−1, t1 + . . .+ tn−1), xn ̸∈ S

⇒

V (n, dn, tn) = max{V (n− 1, dn − tn, t1 + . . .+ tn) + pn, V (n− 1, dn−1, t1 + . . .+ tn−1)}

Space of subproblems would be {S(k, dk, t1 + . . .+ tk): 1 ≤ k ≤ n}.

3.11 Stations

Let s1, . . . , sn be stations with distances between them: d1 = d(s2, s1), . . . , dn−1 = d(sn, sn−1).
When car’s tank is full it has gas for l miles. Find minimal number of stops for the car to traverse the
whole road.

Let S be an optimal solution for n stations, distance d1 + . . . dn−1, tank with gas for l miles.
If car stops in s2, then it has n − 1 stations, distance d2 + . . . + dn−1 and l gas. If car does not
stop in s2, then it has n − 1 stations, distance d2 + . . . + dn−1 and l − d1 gas. Solution S \ s1 is
optimal for s2, . . . , sn, d2 + . . . + dn, l or l − d1 (depending of that if the car has stopped). Thus, S
is depending of three parameters – number of stations, distance to traverse and gas in the tank. So,
S = S(n, d1 + . . .+ dn−1, l) and

S(n, d1 + . . .+ dn−1, l) =

{
S(n− 1, d2 + . . .+ dn−2, l), stopped at s2
S(n− 1, d2 + . . .+ dn−2, l − d1), not stopped at s2

⇒

V (n, d1 + . . .+ dn−1, l) = min{V (n− 1, d2 + . . .+ dn−2, l) + 1, V (n− 1, d2 + . . .+ dn−2, l − d1)}

Let’s proove that dynamic solution can be transformed into greedy solution. Let sk be the station
where car has stopped when no gas is available to reach next station, i.e. k ≤ n is such that d1 + . . .+
dk−1 ≤ l < d1 + . . . + dk. Then, sk is the first station to stop for the car. To prove this we need to
prove:

1. sk belongs to some optimal solution
2. V (n, d1 + . . .+ dn−1, l) = V (n− k, dn−k+1, l − (d1 + . . .+ dk−1)) + 1

Proof for 2. is trivial because sk is chosen such that reccurent formula looses min function and all
subproblems but one. Let’s prove 1. Suppose that S is an optimal solution which doesn’t contain sk.
Then, sl, l < k, must belong to S (l > k is not possible). Thus, S \ sl ∪ sk is also an optimal solution
which contradicts to the assumption that sk ̸∈ S.

3.12 Greedy solution of the fractional knapsack problem

Proove that fractional knapsack problem has the greedy-choice property.
Let a1, . . . , an be items sorted in descending order of vk

wk
, 1 ≤ k ≤ n, where vk is value, wk is weight

of the k-th item. If optimal solution S does not contain fraction f1 ≤ w1 of the item a1, then it contains
fraction fk = f1, k > 1. So, S contains fraction fk = f1, k > 1, where vk

wk
< v1

w1
. Then, S \ fk ∪ f1

is better solution than S, which is contradiction. Thus, S contains fraction f1 of the item a1 with
maximal average value v1

w1
.
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3.13 Maximal product

Let A,B be two sets with n integers. Reorder those integers so
∏n

i=1 a
bi
i , is maximal, where

ai ∈ A, bi ∈ B.
Let S be an optimal solution for n numbers a1, . . . , an, b1, . . . , bn. Then, S \ (a1, b1) is optimal for

some a1, b1. Thus, S = S(n) and

S(n) = (a1, b1) ∪ S(n− 1) for some a1 ∈ A, b1 ∈ B ⇒

V (n) = max{abV (n− 1): a ∈ A, b ∈ B}

Let’s prove that this solution can be transformed to a greedy solution, when a1 = maxA, b1 =
maxB. To prove this we need to prove:

1. a1 = maxA, b1 = maxB belong to some optimal solution
2. V (n) = abV (n− 1)

Proof for 2. is trivial because a, b are chosen such that formula looses max function. Suppose that S
is an optimal solution where a1 ̸= maxA or b1 ̸= maxB. Then, S is solution such that

∏n
k=1 a

bk
k , a1 ̸=

maxB, b1 ̸= maxB, k = 1, . . . , n. Let be a = maxA, b = maxB. Then,

n∏
k=1

abkk < ab
n∏

k=1,ak ̸=a,bk ̸=b

abkk

from which follows that S is not optimal because we’ve found better reordering of A,B. This is a
contradiction.



www.alepho.com 13

4 Backtracking

The technique involves examining of all possible solutions and quitting a search as soon as it shows
that it does not lead to a solution.

4.1 N queens problem

Problem: On a chess board of size n× n, one should place n queens, so no two queens threaten to
each other.

The solution starts from the first column, by placing a queen Q at the first row. Then it tries to
place queens at the subsequent columns by verifying that there are no other queens threaten to Q placed
at previous columns. To perform such check, the function CheckCell(row, column) assumes that
queens are placed on the previous columns. So, it verifies that for a queen Q at the field (row, column)
there are no other queens at the same row, upper left or bottom left part of diagonals.

The main function is QueensSolve(column) which checks whether a queen can be placed at
the given column. If there are no threats by queens at the previous columns (by recursively calling
QueensSolve), the board field is updated to true and the procedure recursively proceeds with the
subsequent columns. If the recursion gives a negative answer, then the field is updated to false and
the backtrack is performed by repeating the algorithm with other positions as possible solutions.

4.2 Knight’s tour

Problem: On a chess board of size 8, starting from the field (1, 1), a knight should visit each field
exactly once.

The solution starts from the field (1, 1) and checks for available fields. If not visited, then the
algorithm marks it as visited and proceeds recursively. If there are no available fields, then the current
field does lead to the solution and it’s marked as not visited and the algorithm proceeds with other
fields.

4.3 Sudoku

Problem: Given a grid 9× 9 with partially filled cells with digits 1, . . . , 9 (empty cell has zero) fill
all other cells with the digits so the following conditions are met:

1. Each digit is unique in each row and each column.
2. Each digit is unique in each of nine subgrids of size 3 x 3.

The algorithm would be:

1. Go cell by cell from (1, 1) to (9, 9) and for each such cell check:

(a) is the digit unique in the row/column
(b) does the digit fit to a subgrid

2. If the check is positive, repeat the algorithm recursively on the next cell.
3. If the check is negative, try another digit with the current cell. If such digit is not available then

go back one cell and repeat the check with next available digit.
4. If all cells are populated, a solution is found.

4.4 Longest possible route

Problem: Given a matrix m×n with a few hurdles arbitrary placed, find the longest possible route
from a source to a destination field. Visiting goes by moving to adjacent cells which are not hurdles.
Diagonal moves are not allowed. Visiting the same cell again on a path is not allowed.
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Algorithm 7 N queens on a chess board

Input
r Cell’s row where to put the queen.
c Cell’s column where to put the queen.

Output
Returns true if a queen can be placed at the given position, false if not.

procedure CheckCell(r, c)
▷ Check columns at the same row before this one.
for 1 to c− 1 do

if B[r][i] = true then
return false

▷ Check upper left part of the diagonal.
for i := r − 1 downto 1, j := c− 1 downto 1 do

if B[i][j] = true then
return false

▷ Check lower left part of the diagonal.
for i := r + 1 to n, j := c− 1 downto 1 do

if B[i][j] = true then
return false

return true

Input
c Column to check whether a queen can be placed.

Output
B Cells set to true if the queen can be placed at some row at the column c.

Returns true if the queen can be placed at the column c.

procedure QueensSolve(c)
▷ Recursion end.
if c > n then

return true
▷ Traverse rows of the given column.
for i := 1 to n do

if CheckCell(i, c) = true then
B[i][c] := true
if QueensSolve(c+ 1) = true then

return true
▷ Current field does not lead to the solution, do the backtrack.
B[i][c] := false

return false

▷ Matrix with cells holding true where the queen can be placed.
new B[1 .. n][1 .. n]
for i := 1 to n do

for j := 1 to n do
B[i][j] := false

QueensSolve(1)
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Algorithm 8 Knight’s tour

Input
r Row to check whether it is part of the chess board.
c Column to check whether it is part of the chess board.

Output
True if does, false if not.

procedure CheckField(r, c)
return 1 ≤ r ≤ 8 and 1 ≤ c ≤ 8

Input
r Row to check whether it is part of the solution.
c Column to check whether it is part of the solution.

Output
B Matrix with fields enumerated as the knight visits them, zero if not visited yet.

procedure KnightSolve(r, c)
if B[r][c] = 0 then

B[r][c] := g
g := g + 1

if g > 64 then
return true

for j in J do
▷ Next row and column.
r′ := r + j[1], c′ := c+ j[2]
if CheckField(r′, c′) = true and B[r′][c′] = 0 then

return KnightSolve(r′, c′)

▷ No jump leads to the solution, do the backtrack.
B[r][c] := 0
g := g − 1
return false

J := {(−1,+2), (+1,+2), (+2,+1), (+2.− 1), (−1,−2), (+1,−2), (−2,+1), (−2,−1)} ▷ Jumps.
g := 1 ▷ Jumps counter.
new B[1 .. 8][1 .. 8] ▷ Chess board.
for i := 1 to 8 do

for j := 1 to 8 do
B[i][j] := 0

KnightSolve(1, 1)
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Algorithm 9 Sudoku

Input
r Row where to check whether the digit has a conflict.
c Column where to check whether the digit has a conflict.
d Digit to check whether it conflicts to the same digit in the grid.

Output
True if does, false if not.

procedure CheckField(r, c, d)
if G[r, c] ̸= 0 then

return false
▷ Check the row.
for i := 1 to 9 do

if i ̸= c and G[r, i] = d then
return false

▷ Check the column.
for i := 1 to 9 do

if i ̸= r and G[i, c] = d then
return false

▷ Check the subgrid.
gx := (r − 1)/3, gy := (c− 1)/3
for i := 3 · gx + 1 to 3 · gx + 3 do

for j := 3 · gy + 1 to 3 · gy + 3 do
if (i, j) ̸= (r, c) and G[i, j] = d then

return false
return true

Input
r Row where to look for the next cell.
c Column where to look for the next cell.

Output
Next cell if available, null if not.

procedure NextCell(r, c)
if r < 9 then

return (r + 1, c)

if r = 9 and c < 9 then
return (1, c+ 1)
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Algorithm 10 Sudoku

Input
r Row where to examine the grid whether a digit can be placed.
c Column where to examine the grid whether a digit can be placed.

Output
True if does, false if not.

procedure SudokuSolve(r, c)
for i := 1 to 9 do

for j := 1 to 9 do
for d := 1 to 9 do

if G[r, c] = 0 then
if CheckF ield(r, c, d) = true then

G[r, c] := d
(r′, c′) := NextField(r, c)
if (r′, c′) = null then

return true
SudokuSolve(r′, c′)

Input
G Grid partially filled with digits.

Output
Whole grid filled with digits according to the rules.

▷ Matrix of digits, partially filled with digits 1-9, or 0 if empty
Read G[1 .. 9, 1 .. 9]
SudokuSolve(1, 1)
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Algorithm 11 Longest possible route

Input
r Source row where to start the possible route.
c Source column where to start the possible route.
D Destination of the longest route.

Output
Longest possible route.

procedure LongestRouteSolve(r, c,D)
C.push((r, c))
if (r, c) = D then

if C.length > M.length then
M = C

else
if G[r − 1, c] = 0 then

G[r − 1, c] = 1
C.push((r − 1, c))
Solve(r − 1, c)

if G[r + 1, c] = 0 then
G[r + 1, c] = 1
C.push((r + 1, c))
Solve(r + 1, c)

if G[r, c− 1] = 0 then
C.push((r, c− 1))
Solve(r, c− 1)

if G[r, c+ 1] = 0 then
C.push((r, c+ 1))
Solve(r, c+ 1)

Input
G Grid is initialized to zero except the cells with hurdles which are -1.

Output
M Maximum path found.

Read(G[1 .. m][1 .. n])
new C[] ▷ Current path as list of cells.
new M []
Read(S,D)
Solve(S.r, S.c)



www.alepho.com 19

5 Sorting arrays

Common problem is to sort an array of n elements. In this section, array indexes go 1 . . . n.

5.1 All Pairs Sort

The naive approach compares all elements of an array. Beside an array, a single linked list can be
sorted this way.

Algorithm 12 All Pairs Sort

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n2).

procedure AllPairsSort(A)
for i := 1 to n− 1 do

for j := 2 to n do
if A[i] > A[j] then

Swap(A[i], A[j])

It can be improved by starting index j from i’s consecutive.

Algorithm 13 All Pairs Sort Fast

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n2).

procedure AllPairsSort(A)
for i := 1 to n− 1 do

for j := i+ 1 to n do
if A[i] > A[j] then

Swap(A[i], A[j])

5.2 Selection Sort

It is similar to the All Pairs Sort. The difference is that it memoizes the index of the minimal
element so far traversed.

5.3 Insertion Sort

It inserts a new coming element into an already sorted subarray. The insertion sort algorithm could
be used for double linked lists.

5.4 Bubble Sort

It repeatedly goes through the array and compares the current element with the one after it.
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Algorithm 14 Selection Sort

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n2).

procedure SelectionSort(A)
for i := 1 to n do

m := i ▷ Minimal element found so far.
for j := i+ 1 to n do

if A[j] < A[m] then
m := j
if m ̸= i then

Swap(i,m)

Algorithm 15 Insertion Sort

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n2).

procedure InsertionSort(A)
for i := 2 to n do

v := A[i]
j := i
▷ Insert v into already sorted A[1 .. j].
while j > 1 and A[j] > v do

A[j + 1] := A[j]
j := j − 1

A[j + 1] := v

Algorithm 16 Bubble Sort

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n2).

procedure BubbleSort(A)
repeat

s := false ▷ Is at least one swap made.
for i := 1 to n− 1 do

if A[i− 1] > A[i] then
Swap(A[i− 1], A[i])
s := true

until not s
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5.5 Merge Sort

Divides an array into two subarrays. Each of the subarrays are divided further until one element
remains which is trivially sorted. The subarrays are repeatedly merged into the sorted array.

5.6 Heap Sort

Sorting can be done by making max heap, placing first element of the heap at the end of array
and decreasing heap. Total runtime is O(n) for MakeHeap and n/2 calls for DownHeap which has
complexity O(lg n) so the total runtime is

O(n) +
n

2
O(lg n) = O(n) +O(n lg n) = O(n lg n)

5.7 Quick Sort

The quick sort algorithm picks an element from the array A, so called pivot. Then it divides the
array so that all elements to the left of the pivot are smaller and all elements to the right of the pivot
are greater. The procedure is repeatedly called until all elements are sorted.

The pivot element can be arbitrary taken, in this case it is set to the begin of the array. It is
exchanged with the other elements, so that it partitions the array.

5.8 Stack Sort

By using two stacks, S with elements and another T as auxiliary, the sort can be achieved like this:

1. pop an element x from S while the top element on T is bigger than x
2. pop all elements from T and push them to T
3. push x to T
4. repeat the steps above until T is non-empty

Complexity of the algorithm is O(n2).
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Algorithm 17 Merge Sort

Input
A Array to sort of length n.

Output
A Sorted array in the increasing order.

Complexity
O(n log(n)).

procedure MergeSort(A, l, r)
▷ Case with only one element.
if r := l + 1 then return

▷ Case with two elements.
if r := l + 2 then

if A[l] > A[r] then
Swap(A[l], A[r])

return
▷ General case.
m := (l + r)/2
MergeSort(A, l,m)
MergeSort(A,m+ 1, r)
MergeSort(A, l,m, r)

procedure Merge(A, l,m, r)
new B[1 .. n] ▷ Auxilliary array to keep sorted subarrays of A
h1 := l ▷ Traverses first half
h2 := m+ 1 ▷ Traverses second half
c := 1 ▷ Traverses both halves
while h1 ≤ m and h2 ≤ r do

if A[h1] < A[h2] then
B[c] := A[h1]
h1 := h1 + 1

else
B[c] = A[h2]
h2 := h2 + 1

c := c+ 1

while h1 ≤ m do
B[c] := A[h1]
h1 := h1 + 1
c := c+ 1

while h2 ≤ r do
B[c] := A[h2]
h2 := h2 + 1
c := c+ 1

for i := 1 to n do
A[l + i] := B[i]
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Algorithm 18 Heap Sort

Input
A Array with n elements.

Output
A Sorted array.

Complexity
O(n lg n).

procedure HeapSort(A)
MakeMaxHeap(A)
for k := n/2 to 1 do

Swap(1, k)
n := n− 1
DownMaxHeap(1)

Algorithm 19 Quick Sort

Input
A Array to sort of length n.
l Begin of the subarray to sort.
r End of the subarray to sort.

Output
A Sorted array in the increasing order.

Complexity
O(n log(n)).

procedure QuickSort(A, l, r)
if l < r then

p = Partition(l, r)
QuickSort(l, p− 1)
QuickSort(p+ 1, r)

Input
A Array to partition.
l Begin of the subarray to partition.
r End of the subarray to partition.

Output
Pivot element

procedure Partition(A, l, r)
i := l, j := r
p := i ▷ Pivot is set to the begin.
while i ≤ j do

while A[i] ≤ A[p] and i ≤ r do
i := i+ 1

while A[j] > A[p] and j ≥ l do
j := j − 1

if i < j then
Swap(i, j)

Swap(i, p)
return i
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6 Array operations

6.1 Selection

Let A be a set of n elements. For an integer 1 ≤ k ≤ n, find the element a ∈ A such that a is larger
than exactly k − 1 elements.

For the solution, the Partition algorithm from Quick Sort is used.

Algorithm 20 Selection

Input
A Array with n elements.
l Index of the element to start selection from.
r Index of the element to stop selection for.
k k-the element to select.

Output
A Index of the k-th element.

Complexity
O(n lg n).

procedure Selection(A, l, r, k)
if l < r then

t := Partition(l, t− 1, k)
if t > l + k − 1 then return Selection(l, t− 1, k)

if t < l + k − 1 then return Selection(t+ 1, r, k − t)
return k

6.2 Maximum subarray

Let A be a set of n integers (positive, negative or zero). The problem is to find a continious
subarray with the largest sum in A, i.e. indices i and j for which 1 ≤ i ≤ j ≤ n, such that

∑j
k=iA[k]

is maximal. It does mean that such subarray must contain only the positive numbers. For instance,
the array [−1, 0, 1,−2, 5,−1, 3, 1,−4, 3] has the largest sum 7 of [5,−1, 3, 1].

In case all array elements are positive, the solution is the whole array A. If all elements are negative,
then a subarray of length one containing the maximal element of A is the needed subarray.

Kadane’s algorithm goes from the left to right, by looking for the best A[i .. j]. At each j-th
iteration, it stores the maximum sum M of A[1 .. j] and the current sum of A[i .. j] in C. Whenever
adding the element A[j] to C decreases the sum (i.e. A[j] < 0), it makes sense to start again the
subarray from A[j], i.e taking i = j.
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Algorithm 21 Kadane’s algorithm for the maximum subarray.

Input
A Array with n integers.

Output
Maximum subarray at indices (i, j) of the value M .

Complexity
O(n).

procedure MaxSubarray(A)
M := −∞, C := 0
i := 1, j := 1
for k := 1 to n do

if C +A[k] ≤ C then
▷ A[k] is negative, so search for a new subarray starting at i = k.
i := k
C := A[k]

else
C := C +A[k]
j := k

M := max(M,C)

return (M, i, j)



www.alepho.com 26

jenny

alice

bob

sam

marry

1

2

3

4

5

6

. . .

16

17

Figure 1: Example of a hash table with a collision.

7 Hash Table

Motivation is to have an array-like data structure where keys can be of any data type (string for
instance) and can be of the variable size. Keys are mapped to numbers from a given sequence and
used as array indexes. Operations of interests are searching, inserting and deleting.

7.1 Definition

Let T [m] be an array. If function h : U → {1, . . . ,m} is given, then T is hash table T [h(k)], with
keys k ∈ U . An element with key k hashes to hash value h(k). If h(k) = h(l) for two distinct keys
k, l ∈ U , then a collision is encountered. Since |U | > m, there must be at least two keys with a same
hash values, so a method for resolving collisions is needed.

Good hash function should minimize the number of collisions and should be fast to compute (ideally
O(1)). In addition, it should uniformly hash keys, ideally with the avalanche criterion (whenever a
single input bit is changed, the output bits change with a least of 0.5 probability).

Most hash functions assume that U = N because it is often possible to make such transformation.
For example, string can be transformed into natural number by summing it’s ASCII code characters.

7.2 Common hash functions

7.2.1 Mid squares

By squaring the given key and taking its middle digits, one can determine the hash. Suppose the
hash table T has 999 slots, so hash function can have at most three digits numbers as value. The
key 1234 after squaring becomes 1522756, its middle digits would be 227. Thus the hash value of 227
would be stored at 227-th place in the table T .

7.2.2 Division

The modulo function h : U → {0, . . . ,m− 1}, h(k) = k mod m, m is a prime number, can be used
as a hash function for a hash table T (usually has the size a power of 2). This method is often good
in practice when the keys are randomly distributed, although it can hash the clustered keys like 100,
200, 300, 400, to the same slot when m = 100.

7.2.3 Multiplication

The function h(k) = ⌊(ak) mod m⌋ where a is chosen to be relatively prime to m, produces hash
values in the range {0, . . . ,m}.
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Algorithm 22 Division hashing by modulo.

Input
T Hash table.
K String to hash.

Output
Hash value of K.

Complexity
O(|K|).

procedure HashModulo(K)
h := 0
for i := 1 → |K| do

h := h+K[i]
▷ Find the biggest prime number m less than |T |.
m = MaxPrime(|T |)
return h mod m

7.2.4 Linear

Improved the multiplication function by adding a constant factor b: h(k) = ⌊(ak + b) mod m⌋.

7.2.5 Polynomial

Suppose that the key k consists of a tuple: k = (k1, . . . , kn). This is the case when k is string
consisting of characters with their ASCII values or k is a point in the coordinate system. By taking a
value p (selected by choice), one can define the hash function

h(k) = h(k1, . . . , kn) =

(
n∑

i=1

kip
i

)
mod m

The Horner’s rule can be used for the efficient computation of the polynom:

k1 + k2p+ k3p
2 + · · ·+ knp

n−1 = k1 + p(k2 + p(k3 + p(k4 + · · ·+ p(kn−1 + pkn · · ·))))

Algorithm 23 Polynom hashing.

Input
K String to hash.
p Polynomial value given by choice.
m Modulo value.

Output
Hash value of K.

Complexity
O(|K|).

procedure HashPolynomial(K, p,m)
h := 0
for i := |K| to |1| do

h := p · h+K[i]
return h mod m

7.3 Collisions

There are several approaches to resolve collisions:

1. chaining
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2. open addressing:

(a) linear probing
(b) quadratic probing
(c) double hashing

Chaining keeps elements with the same hash value in a linked list. Inserting a key K is inserting at
the head of list T [h(K)]. Searching/deleting a key K is searching/deleting it in the list T [h(K)]. Load
factor is α = n/|T |, where n is number of elements stored in hash table. If h is simple uniform hash
function, then searching can be accomplished in Θ(1 + α) time. If the hash table size is proportional
to the number of elements in the table, then searching is made in Θ(1). Inserting and deleting take
O(1) worst-time when the lists are doubly linked.

Open addressing stores all keys in the array T , i.e. no lists per slot. When slot h(K) is already
occupied, hash table is being examined until free slot is found; that is so called probe sequence.

Linear probing increases the interval between probes by one. used function is h(k, i) = (h′(k) +
i) mod m

Quadratic probing increases the interval between probes linearly used function is h(k, i) = (h′(k)+
c1i+ c2i

2) mod m
Double hashing uses hash function of the form h(k, i) = (h1(k) + ih2(k)) mod m
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8 Binary Heap

Motivation for the binary heap is to have structure which enables fast retrieval of maximum or
minimum key, as for instance in the priority queue. This principle is also used by Heap Sort at 5.6.
Operations of interest are inserting an element into heap, deleting and getting maximum/minimum
element.

8.1 Definition

Definition 8.1. Min binary heap is a binary tree containing keys with the following properties:

1. Every level, except possibly the last, is completely filled with nodes and all nodes are as far left
as possible.

2. If y is a child node of x, then x.key ≤ y.key.

For the max binary heap the second condition is modified to be x.key ≥ y.key. These definitions are
equivalent to the definitions from the section Tree at 11.1. In this section only max heap is considered,
min heap is analogous.

3

10 5

13 17 9

Figure 2: Min binary heap of n = 7.

In the pseudo code, the n-sized heap is represented as an n-sized array with indexes 1, 2, . . . , n.
It’s elements are access via index operator a[k]. Parent of an element a[k] is determined as a[k/2] and
children as a[2k] and a[2k + 1].

8.2 Heapifying

Heapifying an element x puts the element at the right place in the heap, so the heap property is
maintained. It can be performed in bottom-up or top-down manner.

Bottom-up method assumes that first k − 1 elements of n-sized array a already form the heap.
Then, the k-th element a[k] has to be moved onto the right position so a[1], . . . , a[k] elements form the
heap. The procedure moves a[k] upwards until it reaches element less than a[k].

3

10 5

13 17 1

3

10 1

13 17 5

1

10 3

13 17 5

Figure 3: Bottom-up heapifying on the newly added node 1.

Theorem 3. The running time of UpHeap is O(log n) for an array a of n elements.

Proof. The running time at k-th element is O(1) for fixing relationships among a[k] and it’s parent
plus the time for all it’s parent nodes up to the top. Maximum size of the subtree above the k-th
element is n/2 so the reccurence is

F (n) = F (
n

2
) + Θ(1)

which solution by master theorem case 2 is F (n) = O(log n). QED

Top-down method observes a[k+1], . . . , a[n] of n-sized array a as leaves of the heap. The algorithm
heapifies a[k], . . . , a[n] by putting k-th element at the proper position.
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Algorithm 24 Heapify the binary heap to top

Input
k-th element to insert into k − 1-sized heap of n-sized array a.

Output
a[1], . . . , a[k] forming the heap.

Complexity
O(log n).

procedure UpHeap(k)
v := a[k]
while k/2 > 0 and v ≤ a[k/2] do

a[k] := a[k/2]
k := k/2
a[k] := v

Algorithm 25 Heapify the binary heap to bottom

Input
k-th element to insert into heap a[k + 1], . . . , a[n] of n-sized array a.

Output
Heap a[k], . . . , a[n] at n-sized array a, a[1], . . . a[k − 1] not part of the heap.

Complexity
O(log n).

procedure DownHeap(k)
v := a[k]
while k < n/2 and v ≤ a[2k] do

j := 2k
if j < n and a[j] < a[j + 1] then

j = j + 1

a[k] := a[j]
k = j
a[j] := v
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Figure 4: Top-down heapifying of the node 10.

Theorem 4. The running time of DownHeap is O(log n) for an array a of n elements.

Proof. The running time at k-th element is O(1) for fixing relationships among a[k] and it’s children
plus the time for a subtree of some of its children. Maximum size of such subtree is 2n

3 , which is case
when the last row is half full. Therefore, the reccurence is

F (n) ≤ F (
2n

3
) + Θ(1)

which solution by master theorem case 2 is F (n) = O(log n). QED

8.3 Creating heap

Making new heap of an existing array a with n elements can be imagined as heapifying first n/2
elements assuming that second n/2 elements already form a heap as it’s leaves.

Algorithm 26 Making the binary heap

Input
Array a with n elements.

Output
a as a heap.

Complexity
O(n).

procedure MakeHeap(k)
for i := n/2 to 1 do

DownHeap(i)

Theorem 5. The running time of MakeHeap is O(n).

Proof. Since there are n/2 operations and each of them has complexity O(log n) total complexity is
O(n log n). Although this bound is true, it is not asmptotically tight.

Tighter bound can be obtained by observing that an n-element heap has height ⌊log n⌋ and at most
⌈n/2h+1⌉ nodes at any height h. Total time of DownHeap when called on a node of height h is O(h),
so the total cost of MakeHeap is

⌊logn⌋∑
h=0

⌈n/2h+1⌉O(h) = O

n

⌊lgn⌋∑
h=0

h

2h

 ≤ O

(
n

∞∑
h=0

h

2h

)
= O(2n) = O(n)

QED

8.4 Inserting key

Inserting new elements consists of adding new element at the end of the heap and then moving into
a correct place. Complexity is actual the complexity of the UpHeap.

8.5 Deleting key

Deleting k-th element is placing the last element on it’s place and heapifying subheap with k-th
element as root. Complexity is actual complexity of DownHeap.
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Algorithm 27 Insert into the binary heap

Input
K Key insert into heap a of n elements.

Output
n+ 1-sized heap a.

Complexity
O(log n).

procedure HeapInsert(K)
n := n+ 1
a[n] := K
UpHeap(n)

Algorithm 28 Deleting from the binary heap

Input
k-th element to delete, 1 ≤ k ≤ n, in the n-sized heap a.

Output
Heap a with n− 1 elements.

Complexity
O(log n).

procedure HeapDelete(K)
a[k] := a[n]
n := n− 1
DownHeap(k)

8.6 Finding minimum key

Since minimum key is in the root of the heap, reading minimum is taking first element, putting
the last one on it’s place and heapifying the whole heap. Complexity is actually the complexity of
DownHeap.

Algorithm 29 Finding minimum in the binary heap

Input
n-sized heap a.

Output
Root (the largest) element of heap a, heap size decreased by one.

Complexity
O(log n).

procedure FindMin()
k := a[1]
a[1] := a[n]
n := n− 1
DownHeap(1)
return k
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9 Leftist Heap

Leftist heap is a heap such that the left subtree has height not less than the right subtree’s height.
The motivation is to have a structure similar to the binary heap which also enables fast merging. It
can be used for the union of priority queues.

The operations of interest are: inserting an element into heap, deleting it, getting minimum/maximum
and merging two leftist heaps into one. The heap is represented as a binary tree with keys in its nodes.

Null path length of a node v is length of the shortest path from v to a leaf. The length is defined
recursively as

d(v) =

{
−1, v is null
1 + min{d(cl), d(cr)}, otherwise

where cl and cr are left and right children of v. Leftist heap H is the binary heap with property that
d(cl) ≥ d(cr), for each v ∈ H.

In the figure 5, node 3 has the null path length 1, node 8 has length 0, node 6 has length 2, and so
on.

9.1 Merging heaps

Merging goes by nodes on the rightmost path and then fixing null path lengths.

3

10 8

21 14 17

23 26

6

12 7

18 24 37 19

33

Figure 5: Leftist heaps H1 and H2 to merge

Merging rightmost path starts from the root. At each step, H1 is the heap with the lesser key at
the root r1. Then, the root r2 becomes right child of r1, and merging continues with r1.cr and r2.
When r1.cr and r2 are merged, longer of them goes to the left and null path length is updated.

3

10 6

21 14 12 7

23 18 24 37 8

33 17 19

26

Figure 6: Merging over rightmost paths, fixing null path lengths at nodes 3 and 7

9.2 Other operations

Minimum key is in the root node, so finding minimum is getting the root key.
Deleting minimum key is removing root and merging its children.
Inserting key K into a heap H is realized as merging of H and single node heap with the key K.
Deleting a node x (not a key) goes by dropping x and merging its children.
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Algorithm 30 Merging leftist heaps

Input
H1 First heap to merge.
H2 Second heap to merge.

Output
H1 Merged heaps in the first heap.

Complexity
O(log n) where n is total number of elements in H1 and H2.

procedure Merge(H1, H2)
if H1 = null then

return H2

if H2 = null then
return H1

if H1.k > H2.k then
Swap(H1, H2)

if H1.cr = null then
H1.cr = H2

else
H1.cr := Merge(H1.cr, H2)
if H1.cl.d < H1.cr.d then

Swap(H1.cl, H1.cr) ▷ Swap handles parent pointers.

H1.d := H1.cr.d+ 1

return H1

Algorithm 31 Finding minimum in a leftist heap

Input
H n-sized heap.

Output
Minimum heap of H.

Complexity
O(1).

procedure FindMin(H)
return H.k

Algorithm 32 Deleting minimum in a leftist heap

Input
H n-sized heap.

Output
Minimum is returned.

Complexity
O(log n).

procedure DeleteMin(H)
if H := null then

return
x := H
Merge(H.cl, H.cr)
return x.k
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Figure 7: Fixed null path lengths

Algorithm 33 Inserting a key into a leftist heap

Input
H Heap of the size n.
K Key to be added into H.

Output
H Heap with the newly added key K.

Complexity
O(log n).

procedure Insert(K)
new x
x.cl := x.cr := null
x.k := null
Merge(H,x)

9.3 Worst case complexity

Lemma 1. Leftist heap with n ≥ 1 nodes on its rightmost path has at least 2n − 1 nodes.

Proof. For n = 1 theorem is trivially true. Suppose it holds for some n and let’s proove it also holds
for heap H with n + 1 elements on its rightmost path. If root is removed, then two leftist subheaps
of n elements remain for which the inductive hypothesis holds true. Thus, for two subheaps there are
2(2n − 1) = 2n+1 − 2 nodes, so together with root gives 2n+1 − 1 nodes in total in H. QED

Theorem 6. Complexity of the merging algorithm for two heaps of total size of n elements is O(log n).

Proof. According to the theorem 1, size of the rightmost path of n-sized leftist heap is O(log n). Since
merging traverses nodes on the rightmost path, the proof follows trivially. QED

Complexity of the insert and delete are equal to the complexity of the merge operation.

Algorithm 34 Deleting a node in a leftist heap

Input
H n-sized heap.
x Non-null node to delete.

Output
H without x.

Complexity
O(log n).

procedure Delete(x)
Merge(x.cl, x.cr)
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10 Skew heap

Skew heap holds the property of having left subtree always greater than the right one. This property
is held by using merge operation defined as a base for all other operations on the skew heap. Set of
operations is: merge two heaps, insert a key, find the minimum, delete the minimum.

10.1 Definition

Skew heap merge joins rightmost paths of heaps H1 and H2 (respecting nodes order); left and right
children of the resulting path are swapped at all levels except the lowest one. Skew heap is binary heap
such that operations inserting, deleting and finding minimum are implemented over the skew heap
merge.

There are two approaches when working with the heap: top-down and bottom-up manner.

10.2 Top-down approach

Top-down merge of heaps H1 and H2 starts from the heap roots by exchanging nodes of their
rightmost paths at all levels except at the lowest one.

2

12 8

20 14 15

22 26

4

11 6

17 21 31 19

29

Figure 8: Skew heaps to merge.
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Figure 9: Merging over the rightmost paths.
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8 31 17 21 22
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26

Figure 10: Rotating left and right children on the rightmost path except the lowest child.

Denote with MergeDown either of these versions.
Inserting key K into heap H of size n is realized as merge of H and the heap of one element with

the key K.
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Algorithm 35 Deleting a node in a leftist heap - recursive version.

Input
H1 First heap to merge.
H2 Second heap to merge.
n Total number of elements in H1 and H2.

Output
H1 Merged heaps together.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure MergeDownRec(H1, H2)
▷ Check against nulls ensures that merging stops at the level next to the last.
if H1 = null then

return H2

if H2 = null then
return H1

if H1.k > H2.k then
Swap(H1, H2)

H1.cr := MergeDownRec(H1.cr, H2)
Swap(H1.cl, H1.cr)
return H1

Algorithm 36 Deleting a node in a leftist heap - iterative version.

Input
H1 First heap to merge.
H2 Second heap to merge.
n Total number of elements in H1 and H2.

Output
H1 Merged heaps together.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure MergeDownIter(H1, H2)
if H1 = null then

return H2

if H2 = null then
return H1

x := H1, y := H2

while x ̸= null and y ̸= null do
if x.k > y.k then

Swap(x, y)

x.cr := y
x := x.cl

return H1
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Algorithm 37 Finding the heap’s minimum.

Input
H Heap H of size n.

Output
Minimum key of H.

Complexity
O(1) - Worst case
O(1) - Amortized

procedure FindMin(H)
return H.k

Algorithm 38 Inserting a key.

Input
H Heap H of size n.
K Key to insert.

Output
H Heap with the added K.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure Insert(K)
new x
x.k := K
return MergeDown(H,x)

Deleting minimum of heap H is realized as merging subheaps of the H’s root.

Algorithm 39 Deleting the minimum.

Input
H Heap H of size n.

Output
H H without the minimum.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure DeleteMin(H)
return MergeDown(H.cl, H.cr)

10.3 Bottom-up approach

To merge heaps efficiently in bottom-up manner, pointers to left and right children should be
replaced with other two pointers: up and down. The up pointer xu of a node x ∈ H is defined as: if x
is the right child, then xu is the parent of x; if x is the left child or root, then xu is the lowest node on
the right path of x. The down pointer xd of a node x ∈ H is the rightmost node of the x’s left subtree;
if left subtree does not exist then xd = x.

Major path of a heap H is the path starting from the H’s root containing right children only. Minor
path is the path starting from the left child H.cl of the root containing right children only. The up
node of the root Hu points to the lowest node of the major path, while the down node of the root Hd

points to the lowest node of the minor path of H.
The bottom-up merge goes by the rightmost paths of heaps H1 and H2, merges them and exchanges
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Figure 11: Major path is green, minor path is blue, merging path is red.

nodes at all levels except the lowest one. When top of the one heap (for instance H1) is reached, the
root of H1 is attached as the right child of the lowest node of the remaining rightmost path of H2.

Insert is realized over the merge operation.
Deleting minimum is removal of the heap’s root, but in the ring representation there are no left and

right child pointer. Instead, up and down pointers are used, and thus deleting is achieved as merging
of the major and minor paths of the heap H.

10.4 Amortized complexity of the top-down approach

Define the weight w(x) of node x as number of descendants of x including x. Non-root node x is
heavy if w(x) > w(px)/2, where px is x’s parent; otherwise x is light.

Lemma 2. Every node x has at most one child heavy node.

Proof. Since w(y) > w(x)/2 for any heavy child y of x, it’s obvious that it’s not possible to have two
or more nodes as y, so y is the unique. QED

Lemma 3. On any path from a node x to a descendant y, there are at most ⌊log w(x)
w(y)⌋ light nodes not

including x. In particular, any path in n-node tree contains at most ⌊log n⌋ light nodes.

Proof. A light child of node x has weight at most w(x)/2. For such k light nodes on the path from x

to y: w(y) ≤ w(x)/2k. Thus, there are k ≤ log w(x)
w(y) on path from x to y. QED

Theorem 7. The amortized time of the merge operation of two heaps H1 and H2 with n1 and n2

nodes respectively, is O(log(n1+n2)). Consequently, finding minimum, inserting and deleting minimum
operation on a heap H of n elements take O(log n) time.

Proof. To calculate amortized cost ĉ of merging two heaps H1 and H2 with n1 and n2 elements, let’s
take as the actual cost c the number of nodes on the merging path. Define the potential as the number
of right heavy nodes in the heap.

The number of light nodes on the right paths of H1 and H2 is log n1 and log n2 respectively. If
n = n1 + n2 is the total number of items in both H1 and H2, then the total number of light nodes on
the two paths is at most 2⌊log n⌋ − 1. Let k1 and k2 be the number of heavy nodes on the right paths
of H1 and H2 respectively and let k be the number of heavy nodes of the resulting merge path. Each
of such k heavy nodes corresponds to a light node of the merging path, so by the Lemma 3 it holds
that k ≤ ⌊log n⌋. The number of nodes on the merge path is two roots plus the number of light and
heavy nodes of H1 and H2:

c = 2 + ⌊log n1⌋+ k1 + ⌊log n2⌋+ k2 ≤ 1 + 2⌊log n⌋+ k1 + k2

Before the merge the potential is sum k1 + k2 of right heavy nodes in H1, H2; afterwards it’s k right
heavy nodes in H, so the potential change is

∆Φ = k − k1 − k2 ≤ ⌊log n⌋ − k1 − k2
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Algorithm 40 Merging up.

Input
H1 First heap to merge.
H2 Second heap to merge.

Output
H2 Merged heaps.

Complexity
O(n) - Worst case
O(1) - Amortized

procedure MergeUp(H1, H2)
if H1 = null then

return H2

if H2 = null then
return H1

if H1.p.k > H2.p.k then
Swap(H1, H2) ▷ Merged heaps to store in.

new H ▷ Rightmost node of H1 moved to H.
H := H1.p
H.p = H
H1.p := H.p
while H1 ̸= H do

if H1.u.k > H2.u.k then
Swap(H1, H2)

▷ Remove from H1 it’s rightmost node x.
x := H1.p,H1.p := x.p
▷ Add x to the top of H.
x.p := H.u, x.down := H.u
H.u := x,H := x

▷ Attach H to the bottom of the rightmost path of H2.
Swap(H2.u,H.u)
return H2

Algorithm 41 Inserting a key.

Input
H Heap H of size n.
K Key to insert.

Output
H H with the additional key K.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure InsertUp(K)
new x
x.k := K
x.p := x, x.down := x
H := MergeUp(H.x)
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Algorithm 42 Deleting minimum.

Input
H Heap H of size n.

Output
H Heap without the minimum.

Complexity
O(n) - Worst case
O(log n) - Amortized

procedure DeleteMin
if H = null then

return
if H.p = H or H.down = H then

H := null
return

▷ Take the lowest nodes from the major and minor paths.
u := H.p, d := H.down
if u.k < d.k then

Swap(u, d)

new H
H ′ := u, u := u.p,H.p := H
while true do

if u.k < d.k then
Swap(u, d)

▷ Remove u from its path.
x := u, u := u.p
▷ Make x the root of H ′ and swap its children.
x.p := x.down, x.down := H ′.p
H ′.p := x,H ′ := x

H := H ′
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Thus, the amortized cost of the merging operation is

ĉ = c+∆Φ = 1 + 2⌊log n⌋+ k1 + k2 + ⌊log n⌋ − k1 − k2 ≤

3⌊log n⌋+ 1 = O(log n)

Finding minimum does not change the potential, the actual cost is constant, so the amortized
complexity is O(1). Complexity of inserting key and deleting minimum is same as of the merging, but
let’s proove that directly.

Let’s calculate the amortized cost for the inserting of a node x with a key K into a heap H of n
elements with k heavy nodes on the right path. The actual cost is log n light and k heavy nodes on
the right path plus the root of H and plus the node x:

c = 1 + ⌊log n⌋+ k + 1 = 2 + ⌊log n⌋+ k

During the insert, heavy nodes are rotated with light nodes, so the potential decreases by k and
increases by number of light nodes plus x. Thus, the potential change is ∆Φ = 1 + ⌊log n⌋ − k. The
amortized cost is

ĉ = c+∆Φ = 2 + ⌊log n⌋+ k + 1 + ⌊log n⌋ − k = 3 + ⌊log n⌋

Let’s calculate the amortized cost for the deleting minimum of a heap H. Suppose H has n nodes,
k of them are heavy ones. Let H1 and H2 be subtrees obtained by removing H’s root; suppose H1, H2

have n1, n2 nodes with k1, k2 heavy nodes on the rightmost path, respectively. Deleting minimum of
H means merging H1, H2. The actual cost is number of nodes merged to the rightmost path:

c = 1 + k1 + ⌊log n1⌋+ 1 + k2 + ⌊log n2⌋ ≤

1+⌊log n1⌋+⌊log n1⌋+1+⌊log n2⌋+⌊log n2⌋ = 2+2⌊log n1⌋+2⌊log n2⌋ = 2(1+⌊log n1⌋+⌊log n2⌋) ≤

2(1 + 2⌊log n⌋ − 1) = 4⌊log n⌋

because for each of k1, k2 heavy nodes there exist ⌊log n1⌋, ⌊log n2⌋ light nodes in H1, H2 and thus
k1 = ⌊log n1⌋, k2 = ⌊log n2⌋; also, ⌊log n1⌋ + ⌊log n2⌋ ≤ 2⌊log n⌋ − 1 as stated above. Potential is
decreased for at most one, because by removing H’s root and merging H1, H2 at most one node
stopped to be heavy one: ∆Φ ≤ −1. So,

ĉ = c+∆Φ = 4⌊log n⌋ − 1 = O(log n)

QED

10.5 Amortized complexity of the bottom-up approach

Theorem 8. The amortized time of merging two heaps H1 and H2 is O(1). Therefore, inserting key
and finding minimum take O(1) time. Deleting minimum takes O(log n) on a n-sized heap.

Proof. The actual cost of merging H1 and H2 is number of nodes on the merging path. Define the
potential as the number of right heavy nodes in the heap plus the number of light nodes on major and
minor paths; before the merge operation the definition applies to H1 and H2, after the merge it applies
to H. The only nodes whose weights change during the merge are those on the major paths of H1 and
H2; their weights can increase but not decrease.

Let H be the resulting heap. Let H1 be the first heap whose root is reached during the merge,
let r1 be the root of H1. The merge path is top part of the left path descending from r1 in H and it
contains all nodes on the major path of H1 and possibly some of the nodes of the major path of H2.
If there are m nodes on the merging path, then the actual cost is c = m.

To calculate the potential change, let’s check how major and minor paths change during the merge
process. The major path of H consists of:
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1. nodes on the major path of H2 not on the merge path
2. the node r1
3. the minor path of H1 if the merge path contains two or more nodes

In the first case, any node on the major path of H2 not on the merging path can increase the
weight, becoming a right heavy instead of right light node. Each such change decreases the potential
by one, so ∆Φ ≤ −m+1. No such node can change from heavy to light because the weights of both it
and its parent increase by the same amount. In the second case, node r1 becomes a node on the major
path of H, increasing the potential by one if r1 is heavy or by two if it becomes light, so ∆Φ ≤ 2. In
the third case, top node of the minor path of H1 increases the potential by two; other nodes of the
minor path of H1 do not change the potential, so ∆Φ = 2.

The minor path of H is the minor path of H2, whose nodes do not have potential changes, so
∆Φ = 0. Thus, the total potential change is ∆Φ ≤ −m + 1 + 2 + 2 + 0 = −m + 5, so the amortized
cost of the merge operation is ĉ ≤ m−m+ 5 = O(1).

Consider the delete minimum operation. When root of the heap H is removed, then two skew
subheaps H1 and H2 remain. The major path of H without the root becomes the minor path of H2,
the minor path of H becomes the major path of H1. For that reason, each light right node on the
minor paths of H1 and H2 have increase of two, so the potential is increased by 4 log n. QED
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11 Graph

Definitions for both directed and undirected graphs refer to graphs. Otherwise, a definition refers
to directed or undirected graph.

A directed graph G is a pair (V,E), where V is finite set and E is a binary relation on V . The set
V is called the vertex set of G, its elements are called vertices; the set E = {(x, y) : x, y ∈ V } is called
edge set of G, and its elements are called edges. Self-loops are allowed, i.e. it is possible to have edge
(y, y), y ∈ V .

If the edge set E contains unordered pairs of distinct vertices, then G = (V,E) is called undirected
graph. That means that

E = {{x, y} : x, y ∈ V, x ̸= y}

i.e. (x, y) and (y, x) are the same edge and self-loops are not allowed in an undirected graph.
For edge (x, y) ∈ E of a directed graph G = (V,E), one says that (x, y) is incident from (or leaves)

vertex x and incident to (or enters) vertex y.
For edge (x, y) ∈ E of an undirected graph G = (V,E), one says that (x, y) is incindent on vertices

x, y.
For edge (x, y) ∈ E of a graph G = (V,E), one says that y is adjacent to x. For an undirected

graph, the adjacency relation is symmetric, which possibly may not be a case with directed graphs.
Adjacent vertex y of x can be also written as x → y.

In an undirected graph, degree of a vertex is number of edges incident on it.
In a directed graph, out-degree of a vertex is number of edges leaving it, in-degree is the number of

edges entering it.
Sequence (x0, x1, . . . , xk), k ≥ 1, of vertices x0, . . . , xk ∈ V such that (xi−1, xi) ∈ E, i = 1, . . . , k,

is called path. Number k is path length, which is equal to the number of edges. Path is simple if all
vertices in the path are distinct. Subsequence of vertices (xi, xi+1, . . . , xj), 0 ≤ i ≤ j ≤ k, is called
subpath of the path (x0, x1, . . . , xk). If for x, y ∈ V there exists path p from x to y, then y is reachable
from x via p.

In a directed graph, path (x0, x1, . . . , xk), k > 0, is a cycle if x0 = xk. If all vertices x1, . . . , xk are
distinct then the cycle is simple. A self-loop is a cycle of length 1. Directed graph with no self-loops
is simple.

In an undirected graph, path (x0, x1, . . . , xk) is simple cycle if k ≥ 3, x0 = xk and x1, . . . , xk are
distinct.

Graph with no cycles is acyclic.
Undirected graph is connected if for each pair of vertices there exists a path which connects them.

The relation ”is reachable” is the relation of equivalence. Therefore, it splits non-connected undirected
graph into classes of equivalence, which are called connected components. In other words, undirected
graph is connected if and only if it contains only one connected component.

In a directed graph G = (V,E), vertices x, y ∈ V are mutually reachable if there exist paths from
both x to y and from y to x. G is strongly connected if each two vertices are mutually reachable. The
mutually reachable is relation of equivalence, so it splits non strongly connected graph into classes of
equivalence, which are called strongly connected components. In other words, directed graph is strongly
connected if and only if it contains only one strongly connected component.

A digraph G is weakly connected if the undirected underlying graph obtained by replacing all
directed edges of G with undirected edges is a connected graph. A digraph G is connected if for each
two x, y ∈ V there exists x⇝ y or y ⇝ x. It is trivial to prove that these definitions are equivalent.

A directed graph G = (V,E) is singly connected if x⇝ y implies that there is at most one simple
path from x to y for all vertices x, y ∈ V .

The transpose of a directed graph G = (V,E) is the graph GT = (V,ET ), ET = {(y, x) ∈ V × V :
(x, y) ∈ E}. GT is computed from G in Θ(V + E) time, if G is represented with adjacency list.

The square of a directed graph G = (V,E) is the graph G2 = (V,E2), where E2 = {(x, z) ∈ V ×V :
(∃y ∈ V )(x, y) ∈ E, (y, z) ∈ E}. G2 is computed from G in Θ(V + E)2 time, if G is represented with
adjacency list.
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A cut is a partition of vertices of a graph into two disjoint subsets. The cut-set of the cut is the
set of edges whose end points are in different subsets of the partition. An edge crosses the cut if they
are in its cut-set. A cut respects an edge set A if no edge from A crosses the cut.

11.1 Tree

A forest is undirected, acyclic graph.
Tree is undirected, connected, acyclic graph. Its vertices are also called nodes. It is obvious that

for each two nodes in the tree, there exists only one path which connects them.
Rooted tree is a tree where one vertex is distinguished from the others. That vertex is called root

of the tree. Thus, for each node x in the tree T with root r, there exists unique path from r to x. Any
node y ̸= on that path is ancestor of x, i.e. x is descendant of y. If (y, x) is the last edge on that path,
then y is parent of x, and x is child of y. Root has no parent. Nodes with same parent are siblings.
Node with no children is leaf (or external node). Non-leaf node is internal node.

Subtree rooted at node x is tree with root x and all its descendants.
Ordered tree is a tree where an order is imposed, i.e. if node has k children, then one can distinguish

first child, second child, . . . , k-th child.
Number of children of the node x of the tree T is called degree of node x. Length of a path from

root r to x is x’s depth in T . Height of node x in the tree T is the number of edges on the longest
simple path from x to any leaf. Height of tree is height of the root r.

Binary tree is a tree where each node has at most two children.
Full binary tree (also called strict binary tree) is a tree in which every node other than the leaf has

two children.
Complete binary tree is a binary tree in which every level (except possibly the last one) is completely

filled, and all nodes are as far left as possible.
Max heap is a tree that satisfies the max heap property : if b is a child node of a, then key a.k ≥ b.k.

Min heap is a tree that satisfies the min heap property : if b is a child node of a, then key a.k ≤ b.k.
Binary heap is a complete binary tree with a heap property.
Operations of interests for particular data structure D are: inserting, deleting and updating value

in D, searching for given value v in D, finding minimum and maximum values in D, union of two data
structures D1 and D2 into new data structure of the same type.

11.2 Breadth first search

The algorithms starts from a given vertex s, which is taken as the source to start the BFS algorithm.
The search goes by visiting all neighbors from s, in case they are not visited yet. When these neighbors
are visited, then neighbors of each of them is visited in the same way. For the purpose of tracing the
neighbors, a queue Q can be used. To determine whether a vertex is being visited or not, an attribute
x.v can be used with the values: N - still not visited, Y - visit finished, P - the visit is in progress.
Each vertex has the previous vertex computed in x.p. The distance of x to s is stored in x.d.

11.3 Depth first search

The algorithms starts from a given vertex s, which is taken as the source to start the DFS algorithm.
The search goes by taking the first non-visited neighbor and start DFS recursively on it. When no such
neighbor is available anymore, the recursion stops. For each x ∈ V , the algorithm traces discovering
and finishing time on x in the attributes x.td and x.tf .

11.4 Topological sort

On a directed acyclic graph, it is possible to impose linear ordering on vertices, such that if (x, y) ∈
E, then x appears before y in that ordering.
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Algorithm 43 Breadth first search

Input
G Graph to search. For all x ∈ V it’s set by default v = N, d = ∞, p = null. Its adjacent

vertices are in the set A.
Input

s Source vertex to start the search.
Output

G For each x ∈ V the attributes v, d, p are computed.

Complexity
O(|E|+ |V |)

procedure BreadthFirstSearch(s)
s.v = P, s.d = 0, s.p = null
Q = ∅
Q.push(s)
while Q ̸= ∅ do

x = Q.pop()
for y := x.A do

if y.v = N then
y.v := P
y.d := x.d+ 1
y.p = x
Q.push(y)

x.v = Y

Algorithm 44 Depth first search

Input
G Graph to search. For all x ∈ V it’s set by default x = N, td = ∞, tf = ∞, p = null. Its

adjacent vertices are in the set A.

Input
s Source vertex to start the search.

Output
G For each x ∈ V the attributes v, d, p, td, tf are computed.

Complexity
O(|E|+ |V |)

procedure DepthFirstSearch(s)
t := 0
for x ∈ V do

if x.v = no then
DfsVisit(x)

procedure DfsVisit(x)
t := t+ 1
x.td = t, x.v = P
for y ∈ x.A do

if y.v = N then
y.p = x
DfsVisit(y)

t := t+ 1
u.v = Y, u.tf = t
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Algorithm 45 Topological sort

Input
G Graph to sort.

Output
List of vertices topologically sorted.

Complexity
O(|E|+ |V |)

procedure TopologicalSort(s)
L = ∅ ▷ List of vertices.
Call DepthFirstSearch(G) to compute x.tf for x ∈ V .
As each x is finished, insert it at the front of L.
return L

11.5 Strongly connected components

Graphs G and GT have exactly the same strongly connected components: x⇝ y iff y ⇝ x.

Algorithm 46 Strongly connected components

Input
G Graph to compute SCCs.

Output
Strongly connected components.

Complexity
O(|E|+ |V |)

procedure StronglyConnectedComponents(s)
L := ∅ ▷ List of components.
DepthFirstSearch(G)
DepthFirstSearch(GT ) but in the main loop of DFS take x ∈ V in order of decreasing x.tf .
Each tree of the DFS forest of GT put into L.
return L
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12 AVL tree

Binary search tree is the AVL tree if for each node, difference between the left and right subtree
height is less or equal than 1. For n nodes, an AVL tree has height of 1.44 lg n. For that reason,
finding, inserting or deleting node is of O(log n) complexity. The presented algorithms assume that all
keys stored in the tree are different.

Lemma 4. Maximum height of AVL tree with n nodes is 1.44 lg n.

Proof. To find maximum height of an AVL tree with n nodes, one should answer what is the minimum
number of nodes (sparsest possible AVL tree) an AVL tree of height h can have? Let Fh be an AVL tree
of height h, having the minimum number of nodes. Let Fl and Fr be AVL trees which are left and right
subtree, respectively, of Fh. Then Fl or Fr must have height h−2. Suppose Fl has height h−1 so that
Fr has height h− 2. Fl has to be an AVL tree having the minimum number of nodes among all AVL
trees with height of h−1 and Fr among all AVL trees of height h−2. Thus, |Fh| = |Fh−1|+ |Fh−2|+1,
where |Fh| denotes number of nodes in Fh. Such trees are called Fibonacci trees. Note that |F0| = 1
and |F1| = 2 and |Fh| + 1 = (|Fh−1| + 1) + (|Fh−2| + 1), so |Fh| are Fibonacci numbers. Using the
approximate formula for Fibonacci numbers, we get

|Fh|+ 1 ≈ 1√
5

(
1 +

√
5

2

)h+3

⇒ h ≈ 1.44 lg |Fn|

This implies that the sparsest possible AVL tree with n nodes has height h ≈ 1.44 lg n which is the
worst case of AVL tree’s height. QED

12.1 Finding node

Finding a node with a given key K starts from the root rT as current node. K is compared with
a key of each current node. If it is less than it’s value, it continues within left subtree; if it’s greater,
then proceeds within right subtree.

Algorithm 47 Finding a key in an AVL tree.

Input
K Key to find.

Output
Node with the key K or null if no K is present or T is empty.

Complexity
O(lg n)

procedure Find(K)
x = rT
while x ̸= null do

if K < x.k then
x = x.cl

else if K > x.k then
x = x.cr

else
return x

return null

To find a predecessor of a given node x, one should get the most right descendant of x’s left child
x.cl. From this definition, it follows that predecessor has no right child (otherwise, that child would
be the predecessor).

To find a successor of a given node x, one should get the most left descendant of x’s right child
x.cr. From this definition, it follows that successor has no left child (otherwise, that child would be
the successor).
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Algorithm 48 Finding a predecessor of a given node.

Input
x Node to find predecessor of.

Output
Predecessor node or null (if x is null or has no predecessor or T is empty).

Complexity
O(lg n)

procedure Predecessor(x)
if x = null or rT = null or x.cl = null then

return null
xl := x.cl
while xl ̸= null do

xl := xl.cr

return xl

Algorithm 49 Finding a successor of a given node.

Input
x Node to find succecessor of.

Output
Successor node or null (if x is null or has no successor or T is empty).

Complexity
O(lg n)

procedure Successor(x)
if x = null or rT = null or x.cr = null then

return null
xr := x.cr
while xr ̸= null do

xr := xr.cl
return xr
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Figure 12: Left rotation of node 2
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Figure 13: Right rotation of node 5

One can easily check if a node is descendant of an another node.

Algorithm 50 Checking whether a node is descendant of another node.

Input
a Ancestor node.
d Descendant node.

Output
True if d is descendant of a.

Complexity
O(lg n)

procedure IsLeftDescendant(a, d)
while d.p ̸= a do

d := d.p

if d = a.cl then
return true

else
return false

12.2 Rotations

Rotations reconnect nodes as described below in figures 12 and 13. There are no changes on balance
factors, they are fixed in the appropriate operations.

Left rotation reconnects nodes, such that rotated node x get it’s right child x.cr for the parent and
left child of x.cr becomes right child of x. Node 2 in the following figure is rotated to the left:

Right rotation reconnects nodes, such that rotated node x get it’s left child for the parent and right
child of x.cl becomes left child of x. Node 5 in the following figure is rotated to the right:

12.3 Inserting node

Inserting node is to put the new key K into tree T by going to the left subtree if K is less than
key of the current node, and to the right if K is greater than key of the current node. When a node is
inserted, balance factors of some of the traversed nodes can be changed. For that reason, those nodes
have to be rebalanced.

While searching correct place to insert new node, last node P with non-zero balance is memorized.
If such node does not exist, then no balancing is necessary after inserting the new node. Subtree at
P can become corrupted after inserting new node and no other tree except this one can be corrupted.
Balances of all nodes from the new one until P are modified. Rotations are made in constant time, so
total time for inserting is O(lg n).
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Algorithm 51 Left rotation of a node.

Input
x Node to rotate.

Output
T Tree with the left rotated x.

Complexity
O(1)

procedure RotateLeft(x)
xp := x.p, xr := x.cr, xrl := x.cr.cl
xr.p := x.p, x.p := xr
if xrl ̸= null then

xrl.p := x

x.cr := xrl, xr.cl := x
if xp ̸= null then

if x = xp.cl then
xp.cl := xr

else if x = xp.cr then
xp.cr := xr

if rT = x then
rT := x.p

Algorithm 52 Right rotation of a node.

Input
x Node to rotate.

Output
T Tree with the right rotated x.

Complexity
O(1)

procedure RotateRight(x)
xp := x.p, xl := x.cl, xlr := x.cl.cr
xl.p := x.p, x.p := xl
if xlr ̸= null then

xlr.p := x

x.cl := xlr, xl.cr := x
if xp ̸= null then

if x = xp.cl then
xp.cl := xl

else if x = xp.cl then
xp.cl := xl

if rT = x then
rT := x.p
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Figure 14: L1 case fixed with right rotation of A
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Figure 15: L2, L3, L4 cases fixed with left rotation of B and right rotation of A

Let A be the last node with the non-zero balance A.b ̸= 0, let the new node be inserted into left
subtree of A, let be B = A.cl, C = B.cl, D = B.cr, X = A.cr and x.h be the height of a subtree at
node x.

First case is when the inserted node is left descendant of B. Then, A.b = −2, B.b = −1, so
D.h = X.h,C.h = D.h + 1 ⇒ C.h = X.h + 1. If A is right rotated, then B is parent of A, D and X
are children of A. It follows that A.b = 0 since D.h = X.h and B.b = 0 because C.h = X.h+ 1.

Second, third and fourth case are when inserted node is right descendant of B. Three possibilities
are available: A.b = −2, B.b = +1, D.b = −1, A.b = −2, B.b = +1, D.b = +1 or A.b = −2, B.b =
+1, D.b = 0, depending of where the node inserted (left or right subtree of D). Denote Dl = D.cl, Dr =
D.cr, and consider the second case D.b = −1. It follows that b(B) = 1 ⇒ D.h = C.h+ 1, D.b = −1 ⇒
Dl.h = Dr.h+1, h(D) = h(Dl)+1, so Dl.h = C.h. Also, X.h = B.h− 2 = D.h− 1 = Dl.h = Dr.h+1.
Therefore, Dl.h = C.h ⇒ B.b = 0;X.h = Dr.h+ 1 ⇒ A.b = +1;Dl.h = X.h ⇒ D.b = 0.

For the third case, rotations are the same and calculus is similar: C.h = Dr.h = Dl.h + 1, X.h =
Dr.h ⇒ B.b = −1, A.b = 0, D.b = 0. The fourth case is same as this one. Let’s write down these cases
symbolically:

Symmetric cases come when inserted node is in the right subtree of A.
The following functions perform cases L1-L3, R1-R3.

Algorithm 53 Case L1.

Input
x Subtree to perform the case L1.

Output
None.

Complexity
O(1)

procedure CaseL1(x)
A := x,B := A.cl
RotateRight(A)
A.b := 0, B.b := 0

Inserting searches for an appropriate leaf node to put the key K into one of it’s children. Then the
balance factors of the traversed nodes are fixed.

12.4 Deleting node

When a node is deleted, heights of subtrees containing that node may be changed. For that reason,
rebalancing has to be performed of all nodes from a deleted one until the root. Deleting Z if both
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Algorithm 54 Case L2.

Input
x Subtree to perform the case L2.

Output
None.

Complexity
O(1)

procedure CaseL2(x)
A := x,B := A.cl, D := B.cr
RotateLeft(B)
RotateRight(A)
A.b := +1, B.b := 0, D.b := 0

Algorithm 55 Case L3.

Input
x Subtree to perform the case L3.

Output
None.

Complexity
O(1)

procedure CaseL3(x)
A := x,B := A.cl, D := B.cr
RotateLeft(B)
RotateRight(A)
A.b := 0, B.b := −1, D.b := 0

Algorithm 56 Case L4.

Input
x Subtree to perform the case L4.

Output
None.

Complexity
O(1)

procedure CaseL4(x)
A := x,B := A.cl, D := B.cr
RotateLeft(B)
RotateRight(A)
A.b := 0, B.b := 0, D.b := 0

Algorithm 57 Case R1.

Input
x Subtree to perform the case R1.

Output
None.

Complexity
O(1)

procedure CaseR1(x)
A := x,B := A.cr
RotateLeft(A)
A.b := 0, B.b := 0
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Algorithm 58 Case R2.

Input
x Subtree to perform the case R2.

Output
None.

Complexity
O(1)

procedure CaseR2(x)
A := x,B := A.cr, D := B.cl
RotateRight(B)
RotateLeft(A)
A.b := −1, B.b := 0, D.b := 0

Algorithm 59 Case R3.

Input
x Subtree to perform the case R3.

Output
None.

Complexity
O(1)

procedure CaseR3(x)
A := x,B := A.cr, D := B.cl
RotateRight(B)
RotateLeft(A)
A.b := 0, B.b := +1, D.b := 0

Algorithm 60 Case R4.

Input
x Subtree to perform the case R4.

Output
None.

Complexity
O(1)

procedure CaseR4(x)
A := x,B := A.cr, D := B.cl
RotateRight(B)
RotateLeft(A)
A.b := 0, B.b := 0, D.b := 0
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Algorithm 61 Inserting a node with the given key.

Input
K Key to insert.

Output
T Tree with the newly added key.

Complexity
O(lg n)

procedure Insert(K)
new z
z.k := K
▷ Empty tree is trivial case.
if rT = null then

rT := z
return

▷ Not empty tree.
c := rT
P := null ▷ Last ancestor with non-zero balance.
▷ Insert z into an empty place.
while true do

if c.b ̸= 0 then
P := c

if K < c.k then
if c.l = null then

c.l := z
z.p := c
break

c := c.cl
else

if c.cr = null then
c.cr := z
z.p := c
break

c := c.cr
if P = null or P.b = 0 then ▷ Just modify balances.

c := z
do

if c = c.p.l then
c.p.b := c.p.b− 1

else
c.p.b := c.p.b+ 1

c := c.p
while c ̸= rT
return

▷ Modify balances from z to P .
c := z
do

if c = c.p.l then
c.p.b := c.p.b− 1

else
c.p.b := c.p.b+ 1

c := c.p
while c ̸= P
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Algorithm 62 Inserting a node with the given key.

▷ Fix balance factors.
if IsLeftDescendant(P, c) = true then ▷ Node inserted to the left.

A := P,B := P.cl, D := B.cr
if A.b = −2 and B.b = −1 then

CaseL1(A)
else if A.b = −2 and B.b = +1 and D.b = −1 then

CaseL2(A)
else if A.b = −2 and B.b = +1 and D.b = +1 then

CaseL3(A)
else if A.b = −2 and B.b = +1 and D.b = 0 then

CaseL4(A)

else▷ Node inserted to the right.
A := P,B := P.cr, D := B.cl
if A.b = +2 and B.b = +1 then

CaseR1(A)
else if A.b = +2 and B.b = −1 and D.b = +1 then

CaseR2(A)
else if A.b = +2 and B.b = −1 and D.b = −1 then

CaseR3(A)
else if A.b = +2 and B.b = −1 and D.b = 0 then

CaseR4(A)

Z

A

N

B

N

A

B

Figure 16: Deleting node Z by replacing it with successor N .

children are null is removing it and checking all parents for balances. If some of the Z’s children isn’t
null, then deleting it is replacing it with predecessor or successor node (call it N). N ’s parent A takes
N ’s single child B as a new child instead of N , Z is replaced with N . The procedure is shown on the
figure 20.

Nodes starting from A should be checked for balances and rotated if necessary. If A’s height has not
changed (balance is 0), the deleting procedure ends; otherwise, A becomes A’s parent and procedure
is repeated. There are three cases on deleting:

D1 A.b = 0, after deleting A.b = ±1 and height of A-tree is not changed, so the deleting procedure is
ended.

D2 A.b = ±1, after deleting A.b = 0, so there’s no need for rotations; but height of trees containing
A is changed, so procedure of balancing continues on parent of A.

D3 A.b = ±1, after deleting A.b = ±2, so rotation are made; height of trees containing A is changed,
so procedure of balancing continues on parent of A. L1-L5 and R1-R5 cases are possible here.

Additional cases on deleting are:

L5 A.b = −2, B.b = 0 ⇒ A.cr ⇒ A.b = −1, B.b = +1
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R5 A.b = +2, B.b = 0 ⇒ A.cl ⇒ A.b = +1, B.b = −1

Algorithm 63 Case L5.

Input
x Subtree to perform the case L5.

Output
None.

Complexity
O(1)

procedure CaseL5(x)
A = x,B = A.cl
RotateRight(A)
A.b = −1, B.b = +1

Algorithm 64 Case R5.

Input
x Subtree to perform the case R5.

Output
None.

Complexity
O(1)

procedure CaseR5(x)
A = x,B = A.cr
RotateLeft(A)
A.b = +1, B.b = −1

Rotations are made in O(lg n) time, so as finding node to delete, so total time for deleting is O(lg n).
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Algorithm 65 Deleting a node for the given key.

Input
K Key to delete.

Output
None.

Complexity
O(lg n)

procedure CaseR4(x)
if rT = null then

return
Z := find(K)
if Z = null then

return
if Z = rT then

delete rT
Ns = Successor(Z), Np = Predecessor(Z)
A = null ▷ Parent of Ns or Np.
if Ns = null and Np = null then

A = p(Z)
if Z = A.cl then

A.b := A.b+ 1
A.cl := Null

else if Z = A.cr then
A.b := A.b− 1
A.cr := Null

delete Z
else if Ns ̸= null then

Z.k := Ns.k
A := Ns.p ▷ Could be also A = Z.p.
if Ns = A.cl then ▷ Successor is not sibling of Z.

if Ns.cr ̸= null then ▷ Connect A with single child (if exists).
A.cl := Ns.cr
Ns.cr.p := A

else
delete A.cl

A.b := A.b+ 1
else if Ns = A.cr then ▷ Successor is sibling of Z.

if Ns.cr ̸= null then
A.cr := Ns.cr
Ns.cr.p := A

else
delete A.cr

A.b := A.b− 1

delete Ns
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Algorithm 66 Deleting a node for the given key.

else if Np ̸= null then
Z.k := Np.k
A := Np.p ▷ Could be also A = Z.p.
if Np = A.cr then ▷ Successor is not sibling of Z.

if Np.cl ̸= null then ▷ Connect A with single child (if exists).
A.cr := Np.cl
Np.cl.p = A

else
delete A.cr

A.b := A.b− 1
else if Np = A.cl then ▷ Successor is sibling of Z.

if Np.cl ̸= null then
A.cl := Np.cl
Np.cl.p := A

else
delete A.cl

A.b := A.b+ 1

delete Np

▷ Correct balances along the tree starting from parent.
while A ̸= null do

if A.b = ±1 then ▷ Case D1.
break

else if A.b = 0 then ▷ Case D2.
if A.p ̸= null then

if A = A.p.l then
A.p.b := A.p.b+ 1

else if A = A.p.cr then
A.p.b := A.p.b− 1

else if A.b = ±+ 2 then ▷ Cases R1 - R5.
B := A.cr
if B.b = +1 then

CaseR1(A)
else if B.b = −1 then

D := B.cl
if D.b = +1 then

CaseR2(A)
else if D.b = −1 then

CaseR3(A)
else if D.b = 0 then

CaseR4(A)
else if B.b = 0 then

CaseR5(A)
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Algorithm 67 Deleting a node for the given key.

else if A.b = ±− 2 then ▷ Cases L1 - L5.
B := A.cl
if B.b = −1 then

CaseL1(A)
else if B.b = +1 then

D := B.cr
if D.b = −1 then

CaseL2(A)
else if D.b = +1 then

CaseL3(A)
else if D.b = 0 then

CaseL4(A)
else if B.b = 0 then

CaseL5(A)

A := A.p
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Figure 17: L1 case.
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Figure 18: L2 case transformed to L3 (where w gets role of z).

13 Red black tree

An alternative to the AVL tree which provides algorithmic complexity for the operations of finding,
inserting and deleting of a key is the red black tree.

Definition 13.1. Binary search tree is the red black tree if:

1. Every node is red or black.
2. The root is black.
3. Every leaf is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to descendant leaves contain the same number of black

nodes.

The rule 2 is sometimes is omitted, because the root can always be changed from red to black.
Red node can have either zero or two children.
Child subtree of any node x is at most twice longer than subtree of it’s sibling (follows from

properties 4 and 5). Subtree in any node x has at least 2hx − 1 internal nodes (proof in [1]). Red black
tree with n internal nodes has height at most 2 lg(n+ 1).

If a red black tree T has n nodes, then maximum number of red nodes is 2n/3 (leaves not calculated).
Maximal number is reached when nodes on levels 2, 4, . . . , T.h, T.h is odd, are colored red and tree T
is full (each node has both children).

It is considered that all leafs have sentinels as children (black nodes with leafs as parents and no
children). Thus, algorithm for deleting will be easier to implement. Notation for a sentinel of a tree T
is sT .

13.1 Inserting

Newly inserted node z is colored red. If (after being inserted) its parent is black, then the process
is over. Otherwise, properties 2 and 4 can be violated (for details see [1]), so recolorings and rotations
have to be made. There are three cases when red black properties are violated and another three
symmetric to those ones. Let be y the z’s uncle i.e. node such that y = z.p.p.cr.

L1 y is red: then z.p.p is black, z.p is red ⇒ y, z.p can be colored black and z.p.p red. The process
continues on z.p.p.

L2 y is black and z = z.p.cr ⇒ left rotation of w transforms it to L3 case (where w gets role of z).
L3 y is black and z = z.p.cl ⇒ color z.p into black, z.p.p into red and rotate right z.p.p; thus, tree

has the correct red-black properties and process finishes.

Symmetric cases are for y = z.p.p.cl
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Figure 19: L3 case which fixes the red-black properties.
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Figure 20: Deleting node Z by replacing it with successor N .

R1 y is red: then z.p.p is black, z.p is red ⇒ y, z.p can be colored black and z.p.p red. The process
is continued on z.p.p.

R2 y is black and z = z.p.cl ⇒ right rotation of w transforms this case to case R3.
R3 y is black and z = z.p.cr ⇒ color z.p into black, z.p.p into red and rotate left z.p.p.

13.2 Deleting

Deleting node z is actually replacing z with it’s predecessor/successor N and fixing red black
properties. If N is red when removed, then properties 1 - 5 still hold. If N is black, then properties 1,
2, 4 and for can be violated. Let x be the N ’s sole child (or sentinel). x is considered to have has an
extra blackness received from N in a sense that this blackness has to be moved into some other node
using rotations and recolorings. Let w = x.p.cr be the sibling of x.

The following cases keep the same number of black nodes of all affected paths and fix properties 1
and 4 (property 2 is fixed later):

L1 w is red: colors of x.p and w are swapped, then x.p is left rotated; this case is reduced to cases
2, 3, 4.

L2 w is black, both w’s children are black ⇒ w is colored red, extra blackness of x is moved to x.p; if
x.p is red, then it is colored into black and the process finishes; otherwise the process is repeated
on x.p which has extra blackness.

L3 w is black, w.cl is red, w.cr is black: colors of w and w.cl are swapped and w is right rotated;
thus, this case is reduced to case L4.

L4 w is black, w.cr is red: w takes color of x.p, x.p and w.cr are colored black, x.p is left rotated,
extra blackness of x is dropped making x colored black; this case finishes transformations.

Symmetric cases are for x = x.p.cr, w = x.p.cl:

R1 w is red: colors of x.p and w are swapped, then x.p is right rotated; this case is reduced to cases
2, 3, 4.

A

x w

P Q

w

A Q

x P

Figure 21: L1 case transformed to L2, L3, L4.
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Algorithm 68 Inserting a node.

Input
K Key to insert into a tree T .

Output
T with the inserted node with K.

Complexity
O(lg n)

procedure Insert(K)
new z
z.k := K
if rT = null then

z.c := BLACK
return

z.c := RED
x := rT
while true do

if K < x.k then
if x.cl = null then

x.cl := z, z.p := x
break

x := x.cl
else

if x.cr = null then
x.cr := z, z.p := x
break

x := x.cr
if x.p = rT then

return
▷ Fix red black properties.
while x.p.c = RED do

▷ Cases L1 - L3.
if x.p = x.p.p.cl then

y := z.p.p.cr
if y.c = RED then ▷ Case L1.

z.p.c := BLACK, y.c := BLACK, z.p.p.c := RED, z := z.p.p
else▷ Cases L2 and L3.

if z = z.p.cr then ▷ Case L2.
z := z.p
RotateLeft(z)

▷ Case L3.
z.p.c := BLACK, z.p.p.c := RED
RotateRight(z.p.p)

else if z.p = z.p.p.cr then ▷ Cases R1 - R3.
y := z.p.p.cl
if y.c := RED then ▷ Case R1.

z.p.c := BLACK, y.c := BLACK, z.p.p.c := RED, z := z.p.p
else▷ Cases R2 - R3.

if z = z.p.cl then ▷ Case R2.
z := z.p
RotateRight(z)

▷ Case R3.
z.p.c := BLACK, z.p.p.c := RED
RotateLeft(z.p.p)

rT .c := BLACK
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Figure 22: L2 case finishes or proceeds on x.p.
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Figure 23: L3 case.

R2 w is black, both w’s children are black ⇒ w is colored red, extra blackness of x is moved to x.p;
if x.p is already red, then the process finishes, otherwise the process is repeated on x.p.

R3 colors of w and p are swapped and w is left rotated.
R4 w is black, w.cl is red: w takes color of x.p, x.p and w.cl are colored black, x.p is right rotated,

extra blackness of x is dropped making x colored black; this case finishes transformations.
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Figure 24: L4 case.
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Algorithm 69 Deleting a node.

Input
K Key to delete,

Output
T without the node with K.

Complexity
O(lg n)

procedure Remove(K)
if rT = null then

return
z := Find(K)
if z = null then

return
if z = rT and rT .cl = null and rT .cr = null then

delete rT
return

if z.c = RED and z.cl = sT and z.cr = sT then
if z = z.p.cl then

z.p.cl := sT
else if z = z.p.cr then

z.p.cr := sT

return

Ns = Successor(x), Np = Predecessor(x), N = null, x = null
if Ns = null and Np = null then

A := z.p
N := A
if z = A.cl then

A.cl := sT
x := A.cl

else if z = A.cr then
A.cr := sT
x := A.cr

else if Ns ̸= null then
N := Ns, A := N.p, z.k = Ns.k
▷ Reconnect A with N ’s right child.
if Ns = A.cl then

if Ns.cr ̸= null then
A.cl := Ns.cr
Ns.cr.p := A

else
A.cl := sT

x := A.cl
else if Ns = A.cr then

A.cr := sT
x := A.cr
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Algorithm 70 Deleting a node.

else if Np ̸= null then
N := Np, A := N.p, z.k := Np.k
▷ Reconnect A with N ’s left child.
if NP = A.cr then

if Np.cl ̸= null then
A.cr := Np.cl
Np.cl.p := A

else
A.cr := sT

x := A.cr
else if NP = A.cl then

A.cl := sT
x := A.cl

if N.c = BLACK or x.p = N then
▷ Fix the red black properties.
while x ̸= rT and x.c = BLACK do

if x = x.p.l then ▷ Cases L1 - L4.
w := x.p.cr
if w.c = RED then ▷ Case L1.

w.c := BLACK, x.p.c := RED
RotateLeft(x.p)
w := x.p.cr

if w.c = BLACK and w.cl.c = BLACK and w.cr.c = BLACK then ▷ Case L2.
w.c := RED
x := x.p
if x.c = RED then

break
else

if w.cr.c = BLACK then ▷ Case L3.
w.cl.c := BLACK, w.c := RED
RotateRight(w)
w := x.p.cr

▷ Case L4.
w.c := x.p.c
x.p.c := BLACK, w.cr.c := BLACK
RotateLeft(x.p)
x := rT ▷ Break the loop.

else if x = x.p.cr then ▷ Cases R1 - R4.
w := x.p.cl
if w.c = RED then ▷ Case R1.

w.c := BLACK, x.p.c := RED
RotateRight(x.p)
w := x.p.cl

if w.c = BLACK and w.cr.c = BLACK and w.cl.c = BLACK then ▷ Case R2.
w.c := RED, x := x.p
if x.c = RED then

break
else

if w.cl.c = BLACK then ▷ Case R3.
w.cr.c := BLACK, w.c := RED
RotateLeft(w)
w := x.p.cl
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Algorithm 71 Deleting a node.

▷ Case R4.
w.c := x.p.c
x.p.c := BLACK
w.cl.c := BLACK
RotateRight(x.p)
x := rT ▷ Break the loop.

x.c := BLACK
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Figure 25: Skip list as the sorted linked list with additional pointers.

14 Skip list

Definition 14.1. Skip list is the linked list with the additional requirements:

1. Nodes are always in the sorted order.
2. Each node has a link to the next node.
3. Every 2k-th node has a pointer to the node 2k places ahead, where k > 1.

That said, every second node has a pointer to the node two positions ahead, every fourth node has
a pointer to the node four positions ahead, and so on. A node with k pointers is called the level k
node. Skip list of n nodes has n

2 nodes of level 1, n
4 nodes of level 2, etc. Levels are bounded by the

maximum level M . Thus, each node x keeps the number of its levels in the variable x.l and its x.l
pointers in the array x.f []. The list L has at least head node l.h (which at the start of list creation
has null pointers on all levels).

14.1 Finding a key

Searching for a key goes from the highest level to the lowest by traversing nodes starting from the
head. When a node with a greater key is found, traversing continues on the level below the current.

Algorithm 72 Searching for a key.

Input
K Key to search in a list L.

Output
Value for the given K.

Complexity
O(log n)

procedure Search(K)
x := L.h
for i := x.l downto 1 do

while x.f [i].k < K do
x := x.f [i]

x := x.f [1]
if x.k = K then

return x.v
else

return null

14.2 Inserting a key

The right position to insert a key goes in the same way as for the key searching. Once the place
is found, pointers of previous nodes on all levels are updated to point to the new node. However, the
level of the newly inserted node has to be determined.
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In the definition of the skip list, the assumption is that half of the nodes that have level k pointers
also have k + 1 pointers. Fraction p of the nodes with level k pointers that also have k + 1 pointers is
the probability distribution (p = 1

2 in the definition).

Algorithm 73 Computing the level.

Input
M Maximum skip list level.
p Levels distribution.

Complexity
O(log 1

p
n).

procedure ComputeLevel(M)
l := 1
while Random() < p and l < M do

l := l + 1

return l

14.3 Deleting a key

Deleting a key is opposite to key inserting: the right node x is found, all pointers of the previous
nodes on all levels are updated, then x is removed.
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Algorithm 74 Inserting a key.

Input
K Key to insert into list L.
V Value corresponding to K.

Output
x New node in L with K,V .

Complexity
O(log n)

procedure Insert(K,V )
new u[1 .. M ] ▷ Pointers of the nodes before x on all levels.
x := L.h ▷
for i := x.l downto 1 do

while x.f [i].k < K do
x := x.f [i]

u[i] := x

x := x.f [1]
if x.k = K then

return null

r := ComputeLevel(M)
if r > L.l then

for i := L.l + 1 to r do
u[i] := L.h

L.l := r
new x
x.l := r, x.k := K,x.v := V
for i := 1 to L.l do

x.f [i] := u[i].f [i]
u[i].f [i] := x

return x
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Algorithm 75 Deleting a key.

Input
K Key to delete in a list L.

Output
.

Complexity
O(log n)

procedure Delete(K)
new u[1 .. M ]
x := L.h
for i := x.l downto 1 do

while x.f [i].k < K do
x := x.f [i]

u[i] := x

x := x.f [1]
if x.k = K then

for i := 1 to L.l do
if u[i].f [i] ̸= x then

u[i].f [i] := x.f [i]

delete x
while L.l > 1 and L.h.f [L.l] = null do

L.l := L.l − 1
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Figure 26: Example of B tree of degree t = 4

15 B tree

Motivation for B the tree is to have data structure that seldom reads or writes keys from the external
memory. When B tree does the read or write, keys are taken in batches, so the communication with
the external memory is minimized. Operations of interest are finding, inserting and deleting key.

Definition 15.1. B tree T with a root r is a tree with the following properties:

1. Every node x has the following fields:

(a) n – number of keys currently stored in node x.
(b) ki – keys stored in nondecreasing order, so that k1 ≤ k2 ≤ . . . ≤ kn.
(c) l – boolean which is true if x is a leaf and false if x is an internal node.

2. Each internal node x contains n + 1 children c1, c2, . . . , cn+1. Leaf nodes have no children, so
those fields are null.

3. The keys ki separate the ranges of keys stored in each subtree; if mi is any key stored in the
subtree with root ci, 1 ≤ i ≤ n, then

m1 ≤ k1 ≤ m2 ≤ k2 ≤ . . . ≤ kn ≤ mn+1

4. All leaves have the same depth, which is the tree’s height T.h.
5. Each internal node except the root contains at least t − 1 and at most 2t − 1 keys. If tree is

nonempty, then root has at least one key. Integer t ≥ 0 is called node degree.
6. Every node x is read from an external memory by calling Read(x) and written by calling

Write(x).

15.1 Searching

To find a key K in a subtree at node x, the given node is checked for existence of such key. If not
found, the correct subtree ci is determined to check recursively. Adjacent keys ki and ki+1 such that
ki ≤ K ≤ ki+1 are found, then searching is continued on ci.

Finding index i at node x such that K = ki for the given key K is trivial.
Finding index i such that given key K fits into ci’s keys range is also trivial.
Finding predecessor key of the given ki in node x is finding the right most key in the subtree ci.

Similarly, finding successor key of the given ki in node x is finding the left most key in the subtree
ci+1.

15.2 Auxiliary node operations

Splitting child node ci of x is an operation performed on a full node ci (n = 2t−1 where n is number
of keys in ci) and x is not full. Splitting moves central key (the one at t-th place) to the correct place
at the parent. The picture shows splitting node of seven keys to two nodes of three, while key 26 is
moved up.
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Algorithm 76 Finding a key

Input
K Key to find in a subtree x.
x Subtree to search.

Output
Node which contains K or null.

Complexity
O(log |T |)

procedure FindKey(K,x)
z := x
while z ̸= null do

i := 1
while i ≤ z.n and K > z.ki do

i := i+ 1

if i ≤ z.n and K = z.ki then
break ▷ z is found.

if z.l = true then
z = null ▷ z is not found.

else
z := Read(z.ci) ▷ Get child from an external memory.

return z

Algorithm 77 Finding an index

Input
K Key to find in node x.
x Node x of degree t to search in.

Output
Index i of x or null.

Complexity
O(t)

procedure FindIndex(K,x)
for i := 1 to x.n do

if K = x.ki then
return i

return null

Algorithm 78 Finding an index of a child

Input
K Key K to find a corresponding child.
x Node x of degree t to search in.

Output
Index i such that K belongs to x.ci or null.

Complexity
O(t)

procedure FindIndexChild(K,x)
for i := 1 to x.n do

if x.ki ≤ K ≤ x.ki+1 then
return i

return null
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Algorithm 79 Predecessor of a node

Input
x Node where to look for the predecessor.
i Index of the node x.

Output
Predecessor key determined as node y and index j, null if not found.

Complexity
O(log |T |)

procedure Predecessor(x, i)
if x.l then

y := x
if i = 1 then

(y, j) := null
else

j := i− 1

else
x = Read(x.ci)
while not x.l do

x = Read(x.cn)

y := x, j := x.n

return (y, j)

Algorithm 80 Successor of a node

Input
x Node where to look for the successor.
i Index of the node x.

Output
Successor key determined as node y and index j, null if not found.

Complexity
O(log |T |)

procedure Successor(x, i)
if x.l then

y := x
if i = x.n then

(y, j) := null
else

j := i+ 1

else
x = Read(x.ci+1)
while not x.l do

x = Read(x.c1)

y := x, j := 1

return (y, j)
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Algorithm 81 Splitting a node

Input
x Node of the degree at least t.
i Index of the full child to split.

Output
Node x split at i-th child.

Complexity
O(t)

procedure Split(x, i)
y := x.ci ▷ Full node.
new z
z.l := y.l
z.n := t− 1
▷ Copy second half of keys from y to z.
for j := 1 to t− 1 do

z.kj := y.kt+j

▷ Copy second half of children from y to z.
if not y.l then

for j := 1 to t do
z.cj := y.ct+j

y.n := t− 1
▷ Move x’s children one place to the right to make room for z.
for j := x.n+ 1 downto i+ 1 do

x.cj+1 := x.cj

x.ci+1 := z
▷ Add new key y.kt for z into x.
for j := x.n downto i do

x.kj+1 := x.kj

x.ki := y.kt
x.n := x.n+ 1
Write(x)
Write(y)
Write(z)
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Figure 27: splitting 7-elements node (t = 4)

Merging is an operation reversed to the split operation. For a node x with at least t keys and
children ci and ci+1 with t − 1 keys – the key ki of x, all keys kj of ci and all keys kl of ci+1 (where
1 ≤ j, l ≤ t− 1) are collapsed into single ci node with 2t− 1 keys. The picture is analogous to the one
of splitting node.

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

Figure 28: merging two 3-elements nodes (t = 4)

Key can be moved from node a (assuming that number of keys is not less than t) to immediate
sibling b (assuming that number of keys is less than 2t− 1). Let x be their common parent, so a = ci
and b = ci+1 for some i; let pj be the last key in a which is going to be moved. Since

K ≤ pj ≤ ki ≤ L ≤ ki+1 for all K ∈ ci, L ∈ ci+1

pj becomes the new ki and old ki becomes the first key q1 in b. Old keys in b are moved one place to
the right, as well b’s children if b is not leaf. Also if a is not leaf, then it’s child dj can stay on it’s
own place but dj+1 has to be moved. Because new ki has value of pj and new q1 has value of old ki,
without violating B tree properties it can be set e1 = dj+1 (e1 is the first child in b). Since ki is the
only key affected by moving and a = ci, b = ci+1, no child of x is moved to the right. The picture
shows moving of key 36.

Symetrically, first key from node a = ci, 2 ≤ i ≤ n + 1, with the number of keys not less that t,
can be moved to immediate sibling b = ci−1, with the number of keys less that 2t− 1.

15.3 Inserting

Inserting key into B tree is about finding appropriate non-full leaf node to insert the key. To insert
key K into non-full node x, check if x is leaf – if does, find the right place to insert; if not, then insert
into a child where K belongs.
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Algorithm 82 Merging a node

Input
x Node to merge.
i Index of x to merge x.ci and x.ci+1.

Output
Merged children x.ci and x.ci+1.

Complexity
O(t)

procedure Merge(x, i)
y := x.ci, z = x.ci+1

▷ Move i-th key of x into y.
y.kt := x.ki
▷ Move the rest of x’s keys to the left.
for j := i to x.n do

x.kj := x.kj+1
delete x.kn+1

x.n := x.n− 1
▷ Copy z’s keys into y.
for j := 1 to t− 1 do

y.kt+1 := z.kj

▷ Copy z’s children into y.
if not z.l then

for j := 1 to t do
y.ct+j := z.cj

y.n = 2 · t− 1
delete z
▷ Remove link for z from x.
delete x.ci+1

for j := i+ 1 to x.n do
x.cj := x.cj+1

delete x.cn
Write(x)
Write(y)
Write(z)
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Algorithm 83 Moving key to a next child

Input
x Node of the degree t where the key is moved between the adjacent children.
i Children ci and ci+1 with degrees at least t and at most 2t− 2, respectively.

Output
Merged children x.ci and x.ci+1.

Complexity
O(t)

procedure MoveKeyNext(x, i)
a := x.ci, b := x.ci+1

▷ Move keys right to make room for the moving one.
for j := 1 to b.n do

b.kj+1 := b.kj
if not b.l then

b.cj+1 := b.cj

b.n := b.n+ 1
b.k1 := x.ki
x.ki := a.kn+1

b.c1 := a.cn+1

delete a.kn+1

delete a.cn+1

a.n := a.n− 1
Write(x)
Write(a)
Write(b)

Algorithm 84 Moving a key

Input
x Node of the degree t.
i Children ci and ci−1 with degrees at most 2t− 2 and at least t, respectively.

Output
Key from ci+1 moved to parent and parent key moved to ci.

Complexity
O(t)

procedure MoveKeyPrev(x, i)
a := x.ci, b := x.ci−1

b.n := b.n+ 1
b.kn := x.ki
x.ki := a.k1
b.cn+1 := a.c1
▷ Move keys left to fill empty slot.
for j := 2 to a.n do

a.kj−1 := a.kj
if not a.l then

a.cj−1 := a.cj

delete a.kn+1

delete a.cn+1

a.n := a.n− 1
Write(x)
Write(a)
Write(b)
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Algorithm 85 Key inserting

Input
x Node where to insert the key.
K Key to insert into the given node x.

Output
Key K inserted.

Complexity
O(log n)

procedure Insert(x,K)
i := x.n
if x.l then

▷ Inserting into a leaf is putting the key to the proper position.
while i ≥ 1 and K < x.ki do

x.ki+1 := x.ki
i := i− 1
x.ki+1 := K
x.n := x.n+ 1
Write(x)

else
while i ≥ 1 and K < x.ki do

i := i− 1

i := i+ 1
Read(x.ci)
if x.ci.n = 2 · t− 1 then

Split(x, i)
▷ Key from ci moved up to x, so check if K should be moved too.
if K > x.ki then

i := i+ 1

Insert(x.ci,K)
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Figure 29: moving key 36

To insert key K into tree T , the algorithm starts at the root. If root is not full, use the above insert
function directly. If not, create new root and split the original root.

Algorithm 86 Key inserting

Input
K Key to insert into the tree T .

Output
Key K inserted.

Complexity
O(log n)

procedure Insert(K)
if r.n = 2 · t− 1 then

new s
r = s
s.l = false
s.n := 0
s.c1 := r
Split(s, 1)
Insert(s,K)

else
Insert(r,K)

15.4 Deleting

Deleting distinguishes cases on leaves and internal nodes. The following situations are possible for
key K and subtree x:

D1 If the key K is in leaf x, then delete the key K from x.

D2 If the key K is in internal node x, then:

D2.1 If x’s child y that precedes K has at least t keys, then delete the predecessor K ′ (which is
placed in leaf of subtree y) of K and replace K by K ′ in x.

D2.2 Symmetrically, if x’s child z that follows K has at least t keys, then delete the successor
K ′ (which is stored in leaf of subtree z) of K and replace K by K ′ in x.

D2.3 Otherwise, if both y and z have only t−1 keys, merge K and all of z into y, so that x loses
both K and the pointer to z, and y now contains 2t−1 keys. Then, delete z and recursively
delete K from y.
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D3 If the key K is not present in internal node x, find child ci that contains K. If ci has only t − 1
keys, execute step D3.1 or D3.2 as necessary to guarantee that we descend to a node containing
at least t keys. Then, recursively delete K on ci.

D3.1 If ci has only t− 1 keys but has an immediate sibling with at least t keys, move key from
sibling to ci.

D3.2 If ci and both of ci’s immediate siblings have t− 1 keys, merge ci with one sibling.

Algorithm 87 Key deleting

Input
x Node where to delete the key.
K Key to delete.

Output
Key K deleted.

Complexity
O(log n)

procedure Delete(x,K)
i := Index(K,x)
if i ̸= null then ▷ cases D1 - D2

if x.l then ▷ case D1
for j := i to x.n+ 1 do

x.kj = x.kj+1

delete x.kn+1

x.n := x.n− 1
Write(x)

else▷ case D2
y := x.ci, z := x.ci+1

if y.n ≥ t then ▷ (case D2.1)
(a, j) := Predecessor(x, i)
K ′ := a.kj
Delete(y,K) ▷ case D1
x.ki := K
Write(x)

else if z.n ≥ t then ▷ case D2.2
(a, j) := Successor(x, i)
K := a.kj
Delete(z,K) ▷ case D1
x.ki := K
Write(x)

else▷ case D2.3
Merge(x, i) ▷ moves K from x to y
Delete(y,K) ▷ case D3

15.5 Complexity

B tree with one, two or three elements has only one (root) node. B tree with four elements can
have at most two nodes, having at least two elements in the child element. If node x has zero keys
then it has one child.

Lemma 5. If n ≥ 1 and t ≥ 2, then for every tree with n nodes and degree t, height of the tree is not
greater than logt

n+1
2 .
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Algorithm 88 Key deleting

else▷ case D3
i := IndexChild(K,x)
if x.ci.n = t− 1 then

if 1 < i < x.n+ 1 then
if x.ci−1.n ≥ t then ▷ case D3.1

MoveKeyNext(x, i− 1)
else if x.ci+1.n ≥ t then ▷ case D3.1

MoveKeyPrev(x, i+ 1)
else▷ case D3.2

Merge(x, i)

else if i = 1 then
if x.ci+1.n = t− 1 then ▷ (case 3.2)

Merge(x, i)
else▷ (case 3.1)

MoveKeyPrev(x, i+ 1)

else if i = x.n+ 1 then
if x.ci−1.n = t− 1 then ▷ case D3.2

Merge(x, i− 1)
else▷ case D3.1

MoveKeyNext(x, i− 1)

Delete(x.ci,K)
else

Delete(x.ci,K)

return x

Theorem 9. Complexity of find, insert and delete operations is O(log n).

Proof. Follows from lemma 5. QED

B* tree is a B tree where each node has at least 2
3 full, i.e. contains at least 4

3 t− 1 keys. Inserting
splits two full sibling nodes into three, so each of them is 2

3 full. Since this scheme ensures that storage
utilization is relatively high, height of B* tree is relatively smaller, consequently the find operation
takes less time than in B tree.

Red black tree where each black node absorbs its red children is B tree. Such black node becomes
node with three keys and four children at most.
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16 B+ tree

Motivation for B+ tree is to have data structure with the properties as for B tree, while keys can
be accessed in batches. Thus, for each key the adjacent keys can be found in constant time.

16.1 Definition

Definition 16.1. B+ tree is B tree with the additional requirements:

1. All keys are stored in the leaves.
2. Leaves form a linked list starting from the leftmost leaf. It is called sequence set.
3. Internal nodes do not necessarily keep all of the keys. Those that are present, separate keys of

the children in the same way as in B tree. They form so called index.

So, while B tree stores keys in all nodes (internal and leaves), B+ tree keeps all keys in leaves and
some of them in internal nodes. In addition, all leaves are linked into one single linked list.

30 65

10 17 25 38 45 51 59 72 86 95

2 4 5 8 10 12 13 15 16 19 20 21 22 23 24 25 27 28 29 . . . . . .

Figure 30: Example of B+ tree of degree t = 4

The figure 30 shows an example of B+ tree where 17 is not the key since it is present in an internal
node only, while 10 and 25 are keys which also occur in internal nodes.

In the pseudo code, all notations remain same as for B tree. Additionally, each leaf x has a pointer
x.a to an adjacent leaf.

16.2 Searching

Starting from the root of a B+ tree, the algorithm finds appropriate child as in the case of B tree.
If key K is found in an internal node, then the search is not stopped, but the appropriate right pointer
is chosen, so the algorithm proceeds down to a leaf.

From the algorithm follows that it doesn’t matter which keys are stored in internal nodes, as long
they separate keys in leaves in a proper way.

16.3 Auxiliary node operations

Splitting node is performed in a similar manner as in B tree. The difference is that central key is
copied to a parent node and placed in the right sibling. Additionally, the sequence set is updated if
necessary.

The split method is slightly modified to support copying of the central key to both parent and
sibling node.

Merging is similar to the one on B tree except that central key is not copied from parent to the
merged children. Additionally, the sequence set is updated if necessary.

Moving key K ∈ ci is performed in a manner similar to the B tree’s move. K replaces the
corresponding parent key which splits ci and ci+1 and K is copied to ci+1 to be it’s first key.

16.4 Insert

Inserting node is exactly the same as for B tree, except the modified split for B+ tree is used.
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Algorithm 89 Key finding

Input
K Key to find.
x Subtree where to look for K.

Output
Node which contains K or null.

Complexity
O(log n)

procedure Find(K,x)
z := x
while z ̸= null do

i := 1
while i ≤ z.n and K > z.ki do

i := i+ 1

if i ≤ z.n and K = z.ki and z.l = true then
break ▷ z found

if z.l = true then
z := null ▷ z not found

else
z := Read(z.ci)

returnz

16.5 Delete

Deleting key K is easier than in case of B tree, because all keys are in leaves. If K is in the index
only, it is not deleted, because it keeps to separate keys in the index in a proper way. Thus, the
following cases are distinguished:

D1 If the key K is in leaf x, then delete the key K from x.

D2 Find child ci that contains K. If ci has only t− 1 keys, execute step D2.1 or D2.2 as necessary to
guarantee that we descend to a node containing at least t keys. Then, recursively delete K on ci.

D2.1 If ci has only t− 1 keys but has an immediate sibling with at least t keys, move key from
sibling to ci.

D2.2 If ci and both of ci’s immediate siblings have t− 1 keys, merge ci with one sibling.
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Algorithm 90 Key split

Input
x Node of degree t to split.
i Full child at this position

Output
None.

Complexity
O(t)

procedure Split(x, i)
y := x.ci ▷ Full node.
new z
z.l := y.l
z.n := T.d− 1
▷ Copy second half of keys from y to z, including central key.
for j := 1 to T.d do

z.kj := y.kT.d−1+j

▷ Copy second half of children from y to z, including central key.
if not y.l then

for j := 1 to T.d+ 1 do
z.cj := y.cT.d−1+j

y.n := T.d− 1
▷ Move x’s children one place to the right to make room for z.
for j := x.n+ 1 downto i+ 1 do

xcj + 1 := x.cj

x.ci+1 := z
▷ Add new key y.kt for z into x.
for j := x.n downto i do

xkj + 1 := x.kj

xi := yt
x.n := x.n+ 1
▷ Update sequence set if necessary.
if y.l = true then

z.a := y.a
y.a := z.a

Write(x)
Write(y)
Write(z)
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Algorithm 91 Key merge

Input
x Node to merge of degree t.
i Index of x’s children ci and ci+1 to merge.

Output
x’s children on position i merged.

Complexity
O(t)

procedure Merge(x, i)
y := x.ci, z := x.ci+1

▷ Move i-th key of x into y.
y.kt := x.ki
▷ Move the rest of x’s keys to the left.
for j := i to x.n do

x.kj := x.kj+1

delete x.kn+1

x.n := x.n− 1
▷ Copy z’s keys into y.
for j := 1 to T.d− 1 do

y.kt+j := z.kj

▷ Copy z’s children into y.
if z.l then

for j := 1 to t do
y.ct+j := z.cj

y.n = 2 · T.d− 1
▷ Update sequence set if necessary.
if y.l then

y.a := z.a

delete z
▷ Remove link for z from x.
delete x.ci+1

for j := i to x.n do
x.cj := x.cj+1

delete x.cn+1

Write(x)
Write(y)
Write(z)
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Algorithm 92 Moving key to the next

Input
x Node of degree t with a key at i-th place.
i Index of x’s children ci and ci+1 with degrees at least t and at most 2t− 2, respectively.

Output
Key from ci moved to parent and parent key moved to ci+1.

Complexity
O(t)

procedure MoveKeyNext(x, i)
a := x.ci, b := x.ci+1

▷ Move keys right to make room for the moving one.
for j := 1 to b.n do

b.kj+1 := b.kj
if not b.l then

b.cj+1 := b.cj

b.n := b.n+ 1
b.k1 := x.ki := a.kn+1

b.c1 := a.cn+1

delete a.kn+1

delete a.cn+1

a.n := a.n− 1
Write(x)
Write(a)
Write(b)

Algorithm 93 Moving key to the previous

Input
x Node of degree t with a key at i-th place.
i Index of x’s children ci and ci−1 with degrees at most 2t− 2 and at least t, respectively.

Output
Key from ci−1 moved to parent and parent key moved to ci.

Complexity
O(t)

procedure MoveKeyPrev(x, i)
a := x.ci, b := x.ci−1

b.n := b.n+ 1
b.kn := x.ki := a.k1
b.cn+1 := a.c1
▷ Move keys left to fill empty slot.
for j := 2 to a.n do

a.kj−1 := a.kj
if not a.l then

a.cj−1 := a.cj

delete a.kn+1

delete a.cn+1

a.n := a.n− 1
Write(x)
Write(a)
Write(b)
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Algorithm 94 Deleting key

Input
x Subtree where to delete the key.
K Key to delete.

Output
Node from which the key is deleted.

Complexity
O(log n)

procedure DeleteKey(x,K)
i := FindIndex(K, x)
if i ̸= null then

if x.l then ▷ Case D1.
for j := i to x.n+ 1 do

x.kj := x.kj+1

delete x.kn+1

x.n := x.n− 1
Write(x)

else▷ Case D2.
i := FindIndexChild(K,x)
if x.ci.n = T.d− 1 then

if 1 < i < x.n+ 1 then
if x.ci−1.n ≥ T.d then ▷ Case D2.1.

MoveKeyNext(x, i− 1)
else if x.ci+1.n ≥ T.d then ▷ Case D2.1.

MoveKeyPrev(x, i+ 1)
else▷ Case D2.2.

Merge(x, i)

else if i = 1 then
if x.ci+1.n = T.d− 1 then ▷ Case D2.2.

Merge(x, i)
else▷ Case D2.1.

MoveKeyPrev(x, i+ 1)

else if i = x.n+ 1 then
if x.ci−1.n = T.d− 1 then ▷ Case D2.2.

Merge(x, i− 1)
else▷ Case D2.1.

MoveKeyNext(x, i− 1)

Delete(x.ci,K)
else

Delete(x.ci,K)

return x
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. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

Figure 31: splitting 7-elements node (t = 4), key 26 is copied to the parent

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

Figure 32: merging two 3-elements nodes (t = 4)

. . . 26 38 50 . . .

. . . 27 31 34 36 41 45 46 48 . . .

. . . 26 36 50 . . .. . .

. . . 27 31 34 38 41 45 46 48 . . .

Figure 33: moving key 36
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17 Splay tree

The motivation is to have a binary tree which performs rotations when a node is accessed. That
way, frequently used nodes are moved up to tree and faster retrieved, which is needed by LRU cache.
Operations of interest are finding, inserting and deleting key, joining two trees and splitting a tree into
at given key into two subtrees.

Let T be a binary tree with root rT ; for each node x ∈ T let p, p′ be the pointers to its left, right
children, parent and grand parent, respectively. Splaying tree T of size n at node x is sequence of the
following splay steps until x becomes the root of T :

zig If p is the root, rotate the edge (x, p), and finish the sequence.

zig-zig If p is not the root and x and p are both left/right children of their respective parents, rotate
the edge (p, p′) and then rotate (x, p).

zig-zag If p is not the root, x is left child of p and p is right child of p′, or vice versa (x is right child
of p and p is left child of p′), then rotate (x, p) and then rotate x with the new p (which was p′

before this step).

y

x c

a b

x

a y

c b

Figure 34: Zig operation on x

z

y d

x c

a b

x

a y

b z

c d

Figure 35: Zig-zig operation on x

z

y d

c x

a b

x

y z

c a b d

Figure 36: Zig-zag operation on x

Binary search tree T is splay tree if for each operation (searching, inserting, deleting) on node x an
additional splaying on x is performed.

17.1 Rotation, linking, assembling

Rotations of nodes are performed as for AVL trees.
If a key K is searched in a tree T , then few subtrees can be recognized. Left tree L is a tree

containing all nodes from T less than K. Right tree R is defined similarly. Middle tree is a subtree of
T rooted at the current node reached during the search.
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If node x is right child of its parent, left linking moves x to be the most right child of L (so it
becomes max (L)). If node x is left child of its parent, right linking moves x to be the most left child
of R (so it becomes min (R)).

For a left and right trees L and R, and node x with left and right children a, b, assembling creates
single tree such that x.cl = L, x.cr = R,L.cr = a,R.cl = b.

L
w

x

y
z

L

x

z

w

y

Figure 37: Left linking of node x

w

x

y
z

R
w

z

R

x

y

Figure 38: Right linking of node x

L
x

R

a b

x

L R

a b

Figure 39: Assembling of node x

17.2 Splaying

Splaying as defined at the start assumes that it starts from a node x and goes until root is reached.
That’s bottom-up splaying; it’s appropriate when direct access to the node is available.

All three x = xpl cases perform right rotation. If right rotation is done by default, then the
remaining left rotation of zig-zag case can be delayed to the zig step of x = xpr case. So, the function
above can be simplified:

In some cases, splaying during traversing the tree T can be performed in a more efficient way.
Top-down splaying starts from a node x and executes splaying steps until a node t with key K is
reached (which is the accessed node). All accessed nodes on the path are classified into left or right
subtree; x is moving toward T ’s bottom by classifying accessed nodes into left and right tree. When x
becomes t, middle tree rooted at x is assembled with L and R.

17.3 Finding key

Finding a key K in subtree T goes by traversing the tree from the root choosing left or right subtree
depending of the key in the current node (same as in binary search tree). If such node x is found, then
splaying on x is performed. If there is no node x such that x.k = K, then the last (non-null) node on
the search path is splayed (in the bottom-up manner). If T is empty, then splaying is not performed.
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Algorithm 95 Left linking of a node.

Input
L Tree to link to.
x Node to link with the tree L.

Output
x left linked to L.

procedure LinkLeft(L, x)
y := x.cl
w := x.p
y.p := w
w.cr := y
x.p := L
L.cr := x

Algorithm 96 Right linking of a node.

Input
R Tree to link to.
x Node to link with the tree R.

Output
x left linked to L.

procedure LinkRight(R, x)
z := x.cr
w := x.p
z.p := w
w.cl := z
x.p := R
R.cl := x

Algorithm 97 Assembling of a node.

Input
L Left tree to assemble.
R Right tree to assemble.
x Node to assemble with L and R.

Output
x, L,R assembled.

procedure Assemble(x, L,R)
a := x.cl, b := x.cr
x.cl := L, x.cr := R
L.p := x,R.p := x
L.cr := a,R.cl := b
a.p := L, b.p := R
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Algorithm 98 Splaying in the bottom-up manner.

Input
x Node to splay.

Output
Tree splayed at x.

procedure SplayUp1(x)
while x.p ̸= null do

if x = x.p.cl then
if x.p.p = null then ▷ Zig

RotateRight(x.p)
else if x.p = x.p.p.cl then ▷ Zig-zig

RotateRight(x.p.p)
RotateRight(x.p)

else if x.p = x.p.p.cr then ▷ Zig-zag
RotateRight(x.p)
RotateLeft(x.p)

else if x = x.p.cr then
if x.p.p = null then ▷ Zig

RotateLeft(x.p)
else if x.p = x.p.p.cr then ▷ Zig-zig

RotateLeft(x.p.p)
RotateLeft(x.p)

else if x.p = x.p.p.cl then ▷ Zig-zag
RotateLeft(x.p)
RotateRight(x.p)

Algorithm 99 Splaying in the bottom-up manner simplified.

Input
x Node to splay.

Output
Tree splayed at x.

procedure SplayUp2(x)
while x.p ̸= null do

if x = x.p.cl then
if x.p = x.p.p.cl then

RotateRight(x.p.p)

RotateRight(x.p)
else if x = x.p.cr then

if x.p = x.p.p.cr then
RotateLeft(x.p.p)

RotateLeft(x.p)
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Algorithm 100 Splaying in the top-down manner.

Input
x Node to start splaying.
K Key until the splaying is performed.

Output
Tree splayed at x.

procedure SplayDown(K,x)
L := R := null
while K ̸= x.k do

if K < x.k then
y := x.cl
if K = y.k then ▷ Case R1

LinkRight(R, x)
x := y

else if K < y.k then ▷ Case R2.
z := y.cl
RotateRight(x)
LinkRight(R, y)
x := z

else if K > y.k then ▷ Case R3.
z := y.cr
LinkRight(R, x)
LinkLeft(L, y)
x := z

else
y := x.cr
if K = y.k then ▷ Case L1.

LinkLeft(L, x)
x := y

else if K > y.k then ▷ Case L2.
z := y.cr
RotateLeft(x)
LinkLeft(L, y)
x := z

else if K < y.k then ▷ Case L3.
z := y.cl
LinkLeft(L, x)
LinkRight(R, y)
x := z

assemble(x, L,R)
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L x R

y b

L y R
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b

Figure 40: Splay down of x for case R1

L x R

y c

z b

L z R

y

x

b c

Figure 41: Splay down of x for case R2

17.4 Joining trees

Assuming that tree T1 is less than tree T2 (i.e. all keys from T1 are less than each key from T2),
join constructs a single tree of all items from T1 and T2. Join finds the largest key m = max(T1) (by
taking the rightmost node in T1). Since finding m splays it (and makes m = r1), the root r1 has null
right child. The operation is completed by making T2 the right subtree of newly created root.

17.5 Splitting a tree

Splitting tree T at key K returns two subtrees T1 and T2 by breaking T at the node which contains
K. The operation is accomplished by finding node with K and then returning two trees formed by
breaking left or right link of the new root. If K is not in T , then the last non-null node found during
the search will be used for splitting.

17.6 Inserting key

Inserting keyK goes by splitting T onK (which returns two subtrees T1 and T2), and then replacing
T with a new root containingK and left/right subtrees T1 and T2. SinceK does not exist in T , splitting
is performed on the last non-null node found during the search.

17.7 Deleting a key

Deleting key K goes by finding K (splaying moves it to root) and then replacing T by joining rT .cl
and rT .cr.

17.8 Amortized complexity

For each x ∈ T of splay tree T , define it’s size as s(x) =
∑

y∈Tx
w(y), where Tx is subtree rooted at

x. Then, let’s define rank of x as λ(x) = log s(x). Finally, define potential of T as Φ(T ) =
∑

x∈T λ(x).

Lemma 6. The amortized time to splay tree with root r(T ) at node x is

ĉx = 3(λ(r(T ))− λ(x)) + 1 = O

(
log

s(r(T ))

s(x)

)
Proof. See [5] for the proof. QED
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Algorithm 101 Finding a key.

Input
K Key to find in a subtree.

Output
Node with key K or null (if K is not in T or subtree is empty).

Complexity
O(lg n)

procedure Find(K)
x := rT
if x = null then

return null
while x ̸= null do

y := x ▷ Track parent of x.
if K < x.k then

x = x.cl
else if K > x.k then

x := x.cr
else

break
if x ̸= null then

SplayUp(x)
else

SplayUp(y)

return x

Algorithm 102 Joining trees.

Input
T1 First tree to join.
T2 Second tree to join.

Output
Node with key K or null (if K is not in T or subtree is empty).

Complexity
O(lg n)

procedure Join(T1, T2)
m := max(T1)
Splay(m)
m.cr := T2

r2.p := m
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Algorithm 103 Splitting a tree.

Input
K Key to split on.

Output
trees T1, T2 obtained by splitting.

Complexity
O(lg n)

procedure Split(K)
Find(K) ▷ Moves K to root.
T1 := rT
T2 := rT .cr
rT .cr := null
rT2 .p := null
return (T1, T2)

Algorithm 104 Splitting a tree.

Input
K Key to insert into tree T .

Output
T Tree with the key K.

Complexity
O(lg n)

procedure Insert(K)
(T1, T2) := Split(K)
rT .k := K
rT .cl := T1, T1.p := rT
rT .cr := T2, T2.p := rT

Algorithm 105 Deleting a key.

Input
K Key to delete from tree T .

Output
T Tree without the key K.

Complexity
O(lg n)

procedure Delete(K)
Find(K)
join(rT .cl, rT .cr)
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Figure 42: Splay down of x for case R3

For a sequence of m accesses on n-node splay tree, the potential decrease is Φm − Φ0 where

Φ0 =

n∑
i=1

λ(i) =

n∑
i=1

log s(i) =

n∑
i=1

log

∑
j∈Ti

w(j)

 ≤
n∑

i=1

log

 n∑
j=1

w(j)



Φm =

n∑
i=1

log

∑
j∈Tm

i

w(j)

 ≥
n∑

i=1

logw(i)

with Ti as subtree at i-th node before splaying and Tm
i as subtree at i-th node after m-th splay

operation. Thus,

Φm − Φ0 ≤
n∑

i=1

logW −
n∑

i=1

logw(i) =

n∑
i=1

log
W

w(i)

where W =
∑n

i=1w(i).
Let’s apply the obtained results to the tree operations. For x ∈ T denote with xp and xs predecessor

and successor of x.

Theorem 10. The amortized time of search operation for x = find(K) is{
3 log W

w(x) + 1, x ∈ T

3 log W
min{w(xp),w(xs)} + 1, x ̸∈ T

Proof. If x ∈ T , by lemma 6, the splaying time for node x is 3 log s(r(T ))
s(x) + 1 ≤ 3 log W

w(x) + 1, where

W = s(r(T )), s(x) ≥ w(x). If x ̸∈ T , then either xp or xs is in T , so s(x) ≥ min{w(xp), w(xs)} and
thus splaying time is 3 log W

min{w(xp),w(xs)} + 1. QED

Theorem 11. The amortized time of join operation is

3 log
W

w(x)
+O(1)

where x = maxT1.

Proof. The bound on join is immediate from the bound on find - the splaying time is at most 3 log s(T1)
w(x) +

1. The increase in potential caused by linking T1 and T2 is log s(T1)+s(T2)
s(T1)

≤ 3 log W
s(T1)

(because

W = s(T1) + s(T2)). QED

Theorem 12. The amortized time of split operation is{
3 log W

w(x) +O(1), x ∈ T

3 log W
min{w(xp),w(xs)} +O(1), x ̸∈ T

where x is node such that k(x) = K.

Proof. Since the searching operation is the only non-constant time operation, then amortized time of
split is same as of find. QED
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Theorem 13. The amortized time of insert operation is

3 log
W − w(x)

min {w(xp), w(xs)}
+ log

W

w(x)
+O(1)

where x is such that k(x) = K.

Proof. Follows from the complexity of finding a key. QED

Theorem 14. The amortized time od delete operation is

3 log
W

w(x)
+ 3 log

W − w(x)

w(xp)
+O(1)

Proof. Result follows from the bounds on find and join operations. QED

Theorem 15. The amortized time of search operation for x = find(K) is O(lg n), where n = |T | is
number of nodes in T .

Proof. Assigning w(x) = 1/n in theorem 10 the proof follows. QED

17.9 Few theorems

By using lemma 6 various corollaries can be obtained.

Theorem 16 (Balance theorem). For a sequence of m operations on n-node tree the total access time
is O((m+ n) log n+m).

Proof. Assign weight w(i) = 1/n for each node i = 1, . . . n. Then, W =
∑n

i=1w(i) =
∑n

i=1 1/n = 1.
Since s(r(T )) = W = 1, the amortized access is

aj = 3 log
s(r(T ))

s(j)
+ 1 = 3 log

1∑
i∈Tj

w(i)
+ 1 ≤ 3 log

1

w(i)
+ 1 = 3 log n+ 1

so the potential decrease is

Φm − Φ0 ≤
n∑

i=1

log
W

w(i)
=

n∑
i=1

log n = n log n

Thus, total access time is

m∑
j=1

tj =

m∑
j=1

aj + n log n =

m∑
j=1

(3 log n+ 1) + n log n = 3m log n+m+ n log n =

(3m+ n) log n+m = O ((m+ n) log n+m)

QED

For node i let q(i) ≥ 1 be it’s access frequency, i.e. the total number of times i is accessed. For
sequence of m accesses it would be

∑n
i=1 q(i) = m, and thus n ≤ m.

Theorem 17 (Static Optimality Theorem). If every node is accessed at least once, then the total
access time is

O

(
m+

m∑
i=1

q(i) log
m

q(i)

)
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Proof. Assign w(i) = q(i)/m, i = 1, . . . n. Then, s(r(T )) = W =
∑n

i=1w(i) = 1. Since s(i) ≥ w(i) =
q(i)/m, then

ai = 3 log
s(rT )

s(i)
+ 1 = 3 log

1
q(i)
m

+ 1 = 3 log
m

q(i)
+ 1

and the potential decrease over the sequence is

Φm − Φ0 = O

(
n∑

i=1

log
W

w(i)

)
= O

(
n∑

i=1

log
m

q(i)

)

Thus,
m∑
j=1

tj =

m∑
j=1

(
3 log

m

q(j)
+ 1

)
+O

(
n∑

i=1

log
m

q(i)

)
=

O

m+
m∑
j=1

log
m

q(i)

+O

(
n∑

i=1

log
m

q(i)

)
= O

m+
m∑
j=1

log
m

q(i)

+O

(
m∑
i=1

log
m

q(i)

)
=

O

(
m+

m∑
i=1

log
m

q(i)

)
= O

(
m+

m∑
i=1

q(i) log
m

q(i)

)
QED

Assume that nodes are numbered from 1 to n in symmetric order and the sequence of accessed
nodes is i1, . . . im.

Theorem 18 (Static Finger Theorem). If f is any fixed node, the total access time is O(n log n+m+∑m
j=1 log (|ij − f |+ 1))

Proof. Assign w(i) = 1/(|i− f |+ 1)2 to each node i. Then,

W =
n∑

i=1

w(i) =
n∑

i=1

1

(|i− f |+ 1)2
≤ 2

∞∑
k=1

1

k2
= O(1)

aj = 3

(
log

W

s(j)

)
≤ 3

(
log

W

w(j)

)
= O

(
log

1
1

(|ij−f |+1)2

)
= O (2 log (|ij − f |+ 1)) = O (log (|ij − f |+ 1))

Φm − Φ0 = O

(
m∑
i=1

log
W

w(i)

)
= O

(
m∑
i=1

log
1
1

(|i−f |+1)2

)
= O

(
n∑

i=1

log (|i− f |+ 1)2

)
= O (n log n)

so the total access time is

m∑
j=1

tj =

m∑
j=1

O (log (|ij − f |+ 1)) +O (n log n) = O

n log n+

m∑
j=1

log (|ij − f |+ 1)

 =

O

n log n+m+

m∑
j=1

log (|ij − f |+ 1)


QED

By changing the node weights as the accesses take place, interesting results can be obtained.
Number the accesses from 1 to m in the order they occur. For any access j, let t(j) be the number
of different nodes accessed before access j since the last access of node ij , or since beginning of the
sequence if j is the first of node ij .
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Theorem 19 (Working Set Theorem). Total access time is O
(
n log n+m+

∑m
j=1 log (t(j) + 1)

)
.

Proof. Assign weights 1, 1/4, 1/9, . . . , 1/n2 to the nodes in order by first access. Suppose that before
access j node ij has weight w(ij) = 1/k2. After the access j set w(ij) = 1 and for each node
i having w(i) = 1/(k′)2, k′ < k, assign w(i) = 1/(k′ + 1)2. Such reassignment permutes weights
1, 1/4, 1/9, . . . , 1/n2 among the nodes and guarantees that w(ij) =

1
(t(j)+1)2

during access j.

Since W =
∑n

k=1
1
k2

= O(1), then aj = O(log(t(j) + 1)). The weight reassignment after an access
j increases the weight of the root, because w(ij) = 1 and node i is moved to root (due to the splaying
operations characteristics); weights of other nodes are decreased. The size of the root is unchanged,
but the sizes of other nodes can decrease. Thus, potential Φ =

∑n
i=1 λ(i) can decrease on weights

reassignment. Similarly, amortized time for weight reassignment after access j is not greater than zero:

ai = 3 log
s(rT )

s(i)
+ 1, a′i = 3 log

s(r(T ))

s(ij)
+ 1

so

a′i − ai = 3 log
s(i)

s(ij)
≤ 0

since s(ij) > s(i) after access j (node i becomes the root). QED

Theorem 20 (Unified Theorem). Total time of a sequence of m accesses on an n-node splay tree is

O

n log n+m+
m∑
j=1

logmin

{
m

q(ij)
, |ij − f |+ 1, t(j) + 1

}
where f is any fixed item.
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18 Trie

Motivation for this data structure is to enable fast retrieval of strings and their common prefixes.
Operations of interest are: finding, inserting and deleting key. The application of this data structure
are the associative array, lexicographic sorting and the radix sort.

18.1 Definition

Trie (also known as prefix tree or digital tree) is a tree T defined over alphabet L with the following
properties:

1. There is one root rT only.
2. Each node x has arbitrary number of children determined by an array x.c[i], where i ∈ L. If x is

leaf, then x.c is empty array i.e. it’s length |x.c| is zero.
3. For each child x.c[i] there is a character x.p[i] ∈ L which determines prefix for x.
4. All leaves and some of internal nodes x ∈ T have associated values x.v. Position of x defines a

key associated with it by appending all characters on the path from the root to x.

4
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Figure 43: Trie with keys/values: ace/7, ammo/1, day/8, do/4, done/2, dust/3, teen/9, teeth/5

18.2 Search

The operation checks if the given key K exists in a trie T . It goes one by one character of K until
the corresponding child exists. If all characters are traversed, then the key K is found; otherwise, the
key does not exist.

18.3 Insertion

The operation puts a key/value pair (K,V ) into trie T . It goes one by one character of K and
checks whether they exist from the root down to leaves. If a character of K is not found on the path,
it is added, as well all remaining characters. If all characters of K exist on the path, then the reached
node is updated with value V .
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Algorithm 106 Finding a key in a trie.

Input
K String to check for existence in a trie T .

Output
Value if exists or null if no such key is present.

Complexity
O(|K|)

procedure Find(K)
x := rT
for i := 1 to |K| do

h := K[i] ▷ Current character.
if x.p[h] ̸= null then

x := x.c[h]
else

return null
return x.v

Algorithm 107 Inserting a key/value into a trie.

Input
K String key to insert into T .
V Value to insert into T .

Output
T with the added (K,V ).

Complexity
O(|K|) is the worst case complexity.

procedure Insert(K,V )
if rT = null then

new rT
px := x := rT
for i := 1 to |K| do

h := K[i]
x := x.c[h]
if x = null then

break
px := x

while i <= |K| do
h := K[i]
new x
px.c[h] := x
new px.p[h]
px := x
i := i+ 1

x.v := V
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Figure 44: Inserting teeth into trie; bold edges are newly created

18.4 Deletion

Deleting key K finds the key in a trie T by traversing a path p from the root down to a node x
that contains K. If x is a leaf, then all nodes on p which are single child are deleted. If x is not leaf,
its value is dropped.

a
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c m a o u e

e m y n s e

o e t n

Figure 45: Trie after deleting the key teeth.

18.5 Worst case complexity

Theorem 21. For a trie T and a key K, finding, inserting and deleting the key have complexity
O(|K|),

Proof. Find has one loop of size |K|. Insert has two loops which in total are of size |K|. Delete has
two loops: the first is obviously of size |K|, the second goes over a path which contains at most |K|
nodes. Thus, complexity of all operations is O(|K|). QED
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Algorithm 108 Deleting a key in a trie.

Input
K Key to delete in the trie T .

Output
T Trie without key K and true returned, false if no such key is present.

Complexity
O(|K|)

procedure Delete(K)
if rT = null then

return false
new P ▷ Stack of nodes traversed on the path of K.
x := rT
for i := 1 to |K| do

h := K[i]
if x.p[h] ̸= null then

x := x.p[h]
P.push(x)

else
return false

delete x
▷ Go up along the path and delete nodes which are the single child.
i := |K|
x := P.pop()
while not P.empty() and |x.c| = 0 and i > 0 do

delete x
h := K[i]
px := P.pop()
if px ̸= null then

delete px.p[h]

x := px
i := i− 1
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19 Radix tree

Radix tree is a trie such that each node which is the only child of its parent is merged to its parent.
Motivation for this data structure is to optimize space usage of nodes, so there are no nodes with only
one child.

7 1 8 4 3

2

9 5

a d tee

ce mmo ay o ust n th

ne

Figure 46: Radix tree with the keys/values: ace/7, ammo/1, day/8, do/4, done/2, dust/3, teen/9,
teeth/5.

19.1 Search

For a given key K, start from the root by finding node x with a key that matches K’s prefix. While
there is such node, proceed with the procedure on x’s children.

Algorithm 109 Finding a key in a radix tree.

Input
K String K to find in radix tree T .

Output
Value if exists or null if no such key is present.

Complexity
O(|K|)

procedure Find(K)
x := rT
L := 0 ▷ Length.
f := true ▷ Is found.
while L ≤ |K| and f = true do

f := False
for i := 1 to x.s do

k′ := Substring(K,L+ 1, x.k[i].l)
if k′ = x.k[i] then

x := x.c[k]
L := L+ k.l
f := true
break

if f = true then
return x.v

else
return null
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19.2 Insert

Inserting key/value pair (K,V ) into radix tree T goes by finding corresponding nodes which match
a prefix of K. The rest of K (if any) is put into T .

a d tee

ce mmo ay o ust n th

ne

Figure 47: Inserting teeth into the radix tree; the bold edge is created.

19.3 Delete

To delete key K in radix tree T , find a corresponding node x for the key K; let px be x’s parent.
If x is a leaf, then it is deleted. In case that px after deletion of x remains with only one child y, then
y’s key is appended to px’s.

a d teen

ce mmo ay o ust

Figure 48: Radix tree after deleting the key teeth.

19.4 Worst case complexity

Theorem 22. For a trie T and a key K, finding, inserting and deleting the key have complexity
O(|K|),

Proof. All operations have loops of size |K|, thus their complexity is O(|K|). QED
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Algorithm 110 Inserting a key into a radix tree.

Input
K Key to insert into a radix tree T .
V Value to insert into a radix tree T .

Output
T Radix tree with the added key/value.

Complexity
O(|K|)

procedure Insert(K,V )
▷ Find path that matches K’s prefix.
px := x := rT
L := 0 ▷ Length.
f := true ▷ Is found.
while L ≤ |K| and f = true do

f := false
for i := 1 to x.s do

k′ := Substring(K,L+ 1, |x.k[i]|)
if k′ = x.k[i] then

px := x
x := x.c[k′]
L := L+ |k′|
f := true
break

▷ If K’s suffix which did not match existing keys exists, add it to a new child.
if L < |K| then

new x
k′ := Substring(K,L+ 1, |K| − L)
px.c[k] := x
px.k[px.x+ 1] := k′

px.s := px.s+ 1

x.v := V



www.alepho.com 109

Algorithm 111 Deleting a key from a radix tree.

Input
K Key to delete from a radix tree T .

Output
T Radix tree without the deleted key.

Complexity
O(|K|)

procedure Delete(K)
px := x := rT
kpx := kx := null
ix := 0
L := 0
f := true
while L < |K| and f = true do

f := false
kpx := kx
for i := 1 to x.s do

k′ := Substring(K,L+ 1, |x.k[i]|)
if k′ = x.k[i] then

px := x
x := x.c[k′]
kx := k′, ix := i
L := L+ |k′|
f := true
break

x.v := null
▷ In case the key from a leaf is deleted, remove the leaf.
if k′ = |K| then

delete x
delete px.c[kx]
delete px.k[ix]
px.s := px.s− 1
▷ In case single child remains, concatenate key with the parent key.
if px.s = 1 then

ky := px.k[1]
y := px.c[ky]
kpx := kpx + ky
delete px.k[1]
delete px.c[1]
delete y
px. := 0
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20 Treap

A treap is a binary structure which keeps both randomized binary search tree and heap properties.
That said, T is treap if

1. Every node x consists of a pair: key x.k and priority x.l.
2. The binary search tree property holds: ∀x ∈ T : x.cl.k ≤ x.cr.k.
3. The heap property holds: ∀x ∈ T : x.p.l ≤ x.l.

Construction of a binary tree could lead to various tree shapes: it can be a list or perfectly balanced.
The shape is determined by the random permutation of the numbers (1, 2, 3, 4, 5, 6, 7).

1
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Figure 49: Two kind of trees containing numbers 1, 2, 3, 4, 5, 6, 7.

The priority prevents a treap to deform into a non-balanced tree. By looking the key and priority
of a node as (x, y) coordinates in the Cartesian plane, the shape of the treap forms a tree. That’s the
reason why the treap is also called the Cartesian tree. The treap shape is uniquely determined, i.e. it
does not depend on the order of node insertions.

For n numbers, the probability of any permutation of the numbers (1, . . . , n) is 1
n! . Let Hk be the

harmonic number defined as

Hk = 1 +
1

2
+

1

3
+ . . .+

1

k

For the harmonic number Hk the following equation holds:

ln k < Hk ≤ ln k + 1

Lemma 7. In a random binary search tree (thus for a treap too) of size n, for any k ∈ [0, . . . , n− 1]
the expected height of the subtree at x is Hk+1 +Hn−k = O(1).

To search a key, the standard BST searching can be used.

20.1 Inserting node

Inserting a key K into a treap T goes as in a BST, by creating a leaf x ∈ T such that x.k = K. At
this point the binary search tree property holds, but not the heap property. So, x.l can be randomly
determined, then the heap property to be fixed by going up to the root and performing left or right
rotations. If x is the left child of x.p and x.k < x.p.k, then by doing RotationRight(x.p) the heap
property will be fixed and the BST property remain to hold. Conversely, if x is the right child of x.p
and x.k < x.p.k, then RotationLeft(x.p) fixes both heap and BST properties. The insert procedure
proceeds on x.p until x.k ≥ x.p.k.

20.2 Deleting node

Removing a node x from a treap T goes by moving x to T ’s bottom until it becomes leaf. While
moving it downwards, the following situations may happen:



www.alepho.com 111

1. Both x.cl and x.cr are null, then no more rotations is needed and x can be deleted.
2. If x.cl (or x.cr) is null, then perform the right (or left) rotation at x and proceed with these steps

at x.
3. If x.cl.l < x.cr.l (or x.cl.l > x.cr.l), then perform the right (or left rotation) at x and proceed

with these steps at x.

By deleting x as leaf, both the BST and heap properties remain valid.

20.3 Splitting

To split a treap T at the given key K into two treaps T1, T2 such that all keys from T1 (or T2) are
smaller (or greater) than K, insert a node x with the key K into T . The child x.cl is actually T1 and
x.cr is actually T2.

20.4 Merging

Given two treaps T1, T2 where all keys from T1 are smaller from those of T2, they can be merged in
O(lg n) time. A new node x is created such that x.k > max {k ∈ T1} and x.k < min {k ∈ T2}. Assign
the maximum priority to x.l and set x.cl = T1, x.cr = T2. Rotations at x is made as necessary to fix
the heap order. After these rotatations, x is a leaf, it can be deleted and the merging is done.
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21 Zip tree

A zip tree T is a binary search tree with nodes having ranks and the tree is max heap ordered on
the rank. Each parent has the rank greater than the left child’s rank and not less than the right child.
The rank is stored in x.ρ. The keys are kept in x.k and conform to the usual BST rules.

Inserting of the node x such that x.k = K goes as in the BST by comparing keys, but does not
reach leaves. Instead, it stops at the node y such that y.ρ ≤ x.ρ and y.k < x.k. From this node
until the rest of the BST, the search path is unzipped, i.e. split into two paths P and Q, where
P = {z ∈ T : z.k < x.k} and Q = {z ∈ T : z.k > x.k}. The P ’s and Q’s roots become x’s left and
right child respectively. x replaces y’s position at its parent y.p to be the left or right child. In case y
had no parent (i.e. it was root), x becomes the new root.

Deleting of the key K goes in the opposite order of the inserting. Find the node x such that
x.k = K. Let P,Q be the left and right spines of the node x to delete. Zipping of P,Q is to make a
single path R out of them. During these paths merge, if two nodes have the same rank, then the one
with the smaller key becomes the parent.
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Figure 50: Inserting and deleting of the node K with the rank 3. P,Q are blue and red nodes,
respectively.

The zip tree does not depend on the order of insertions and deletions that are executed, it is history
independent. So, the zip tree structure is uniquely determined by the keys and ranks of its nodes.
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