www.alepho.com 1

1 Splay tree

Motivation for this data structure is to have binary tree which performs rotations when nodes is
accessed. Operations of interest are finding, inserting and deleting key, joining two trees and splitting
a tree into at given key into two subtrees.

1.1 Definition

Let T be a binary tree with root r(T"); for each node z € T let ¢/(x), ¢ (x),p(z) be the pointers to
its left, right children and parent, respectively. Splaying tree T of size n at node x is sequence of the
following splay steps until x becomes the root of T

zig If p(x) is the root, rotate the edge (x,p(x)), and finish the sequence.

zig-zig If p(x) is not the root and = and p(z) are both left /right children of their respective parents,
rotate the edge (p(x), p(p(x))) and then rotate (x, p(z)).

zig-zag If p(z) is not the root, x is left child of p(x) and p(x) is right child of p(p(x)), or vice versa
(x is right child of p(z) and p(zx) is left child of p(p(z))), then rotate (z,p(x)) and then rotate
x with the new p(x) (which was p(p(z)) before this step).

1)

Figure 1: Zig operation on x

£y

Figure 2: Zig-zig operation on x

Binary search tree T' is splay tree if for each operation (searching, inserting, deleting) on node x an
additional splaying on z is performed.

In the pseudo code, root of a (sub)tree T is denoted with root(T), left and parent children with
childl(z) and child_r(x), where x € T. Parent of x € T' is parent(z), key is read by key(z).

www.alepho.com 2

0

o}© o

O® _, ®Q
OO OO

Figure 3: Zig-zag operation on x

1.2 Rotation, linking, assembling

Rotations of nodes are performed as for AVL trees.

If a key K is searched in a tree T', then few subtrees can be recognized. Left tree L is a tree containing
all nodes from T less than K. Right tree R is defined similarly. Middle tree is a subtree of T' rooted
at the current node reached during the search.

If node x is right child of its parent, left linking moves x to be the most right child of L (so it becomes
max (L)). If node z is left child of its parent, right linking moves x to be the most left child of R (so
it becomes min (R)).

For a left and right trees L and R, and node x with children a = ¢;(x),b = ¢,(x), assembling creates
single tree such that ¢;(z) = L, c.(z) = R, ¢, (L) = a,¢(R) = b.

L ®)

Figure 4: Left linking of node x

Input: node x to link with the left tree L
Output: z left linked to L
Worst Case Complexity: O(1)
link_left(L, x)

y = child_I(z)

w = parent(z)

parent(y) = w

child_r(w) =

parent(z) = root()

child_r(root(L)) =

www.alepho.com

A
{ j
Figure 5: Right linking of node x

A ® A

/a\ /b\

Figure 6: Assembling of node z

Input: node z to link with the right tree R
Output: z right linked to R
Worst Case Complexity: O(1)
link_right(R, x)

z = child_r(x)

w = parent(z)

parent(z) = w

child_I(w) =
parent(z) = root(R)
child_l(root(R)) = x

Input: node x to assemble with the left and right trees L and R
Output: z, L, R assembled

Worst Case Complexity: O(1)

assemble(x, L, R)

a = child_I(z)
b = child_r(x)
child_I(z) = root(L)
child_r(x) = root(R)
parent(root(L)) = x
parent(root(R)) = z
child_r(root(L)) = a
child_I(root(R)) = b
parent(a): root(L)
parent(b) = root(R)

www.alepho.com 4

1.3 Splaying

Splaying as defined at the start assumes that it starts from a node x and goes until root is reached.
That’s bottom-up splaying; it’s appropriate when direct access to the node is available.

Input: node z to splay in bottom-up fashion
Output: tree splayed at x
Worst Case Complexity: O(lgn)
splay_up_1(x)
while parent(z) # null
if © = child_I(parent(z))
if parent(parent(z)) = null {zig}
rotate_right(parent(x))
else if parent(x) = child_I(parent(parent(x))) {zig-zig}
rotate_right(parent(parent(x)))
rotate_right(parent(z))
else if parent(x) = child_r(parent(parent(z))) {zig-zag}
rotate_right(parent(x))
rotate_left(parent(z))
else if x = child_r(parent(x))
if parent(parent(z)) = null {zig}
rotate_left(parent(z))
else if parent(x) = child_r(parent(parent(x))) {zig-zig}
rotate_left(parent(parent(x)))
rotate_left(parent(x))
else if parent(z) = child_I(parent(parent(z))) {zig-zag}
rotate_left(parent(x))
rotate_right(parent(x))

All three x = child_1(parent(z)) cases perform right rotation. If right rotation is done by default, then
the remaining left rotation of zig-zag case can be delayed to the zig step of x = child_r(parent(x))
case. So, the function above can be simplified:

Input: node z to splay in bottom-up fashion
Output: tree splayed at x
Worst Case Complexity: O(lgn)
splay_up_2(x)
while parent(z) # null
if © = child_I(parent(z))
if parent(x) = child_I(parent(parent(x)))
rotate_right(parent(parent(x)))
rotate_right(parent(x))
else if x = child_r(parent(x))
if parent(x) = child_r(parent(parent(z)))
rotate_left(parent(parent(x)))
rotate_left(parent(z))

In some cases, splaying during traversing the tree T' can be performed in a more efficient way. Top-
down splaying starts from a node x and executes splaying steps until a node ¢t with key K is reached
(which is the accessed node). All accessed nodes on the path are classified into left or right subtree; x
is moving toward T’s bottom by classifying accessed nodes into left and right tree. When x becomes
t, middle tree rooted at x is assembled with L and R.

www.alepho.com

AN

A G A
(®)

Figure 7: Splay down of x for case R1

i

A @ &
@)
(x)
(®)

Figure 8: Splay down of = for case R2

Input: node x € T to start splaying until node with key K is reached

Output: tree splayed at =
Worst Case Complexity: O(lgn)
splay_down(K, x)

L=R=null
while K # key(x)
if K < key(x)

y = child_I(z)

if K = key(y) {case R1}
link_right(R, x)

r=y
else if K < key(y) {case R2}
z = child_I(y)

rotate_right(x)
link_right(R, y)
r=2z

else if K > key(y) {case R3}
z = child_r(y)
link_right(R, x)
link_left(L, y)
r=2z

else

y = child_r(z)

if K = key(y) {case L1}
link_left(L, x)
T=y

else if K > key(y) {case L2}

www.alepho.com 6

A ® A @ A
ORCINEN Q)
® O 0o

Figure 9: Splay down of x for case R3

z = child_r(y)
rotate_left(z)

link_left(L, y)

rT=2z

else if K < key(y) {case L3}

z = child_I(y)

link_left(L, x)

link_right(R, y)

r=2z

assemble(x, L, R)

1.4 Finding key

Finding a key K in subtree T' goes by traversing the tree from the root choosing left or right subtree
depending of the key in the current node (same as in binary search tree). If such node z is found,
then splaying on x is performed. If there is no node z such that k(z) = K, then the last (non-null)
node on the search path is splayed (in the bottom-up manner). If T is empty, then splaying is not
performed.

Input: key K to find in subtree T
Output: node with key K or null (if K is not in T" or subtree is empty)
Amortized Complexity: O(lgn)
find(K)
x = root(T)
if x = null
return null
while x # null
y = x {track parent of x}
if K < key(z)
x = child_I(x)
else if K > key(z)
x = child_r(x)
else
break
if x # null
splay_up(x)
else
splay_up(y)
return x

www.alepho.com 7

1.5 Joining trees

Assuming that tree T} is less than tree T (i.e. all keys from T; are less than each key from T3), join
constructs a single tree of all items from 7} and T5. Join finds the largest key m = max(Ty) (by
taking the rightmost node in 77). Since finding m splays it (and makes m = r(7})), the root r(T})
has null right child. The operation is completed by making 75 the right subtree of newly created root.

Input: 77,75 trees to join
Output: splay tree consisting of T and 15
Amortized Complexity: O(lgn)

join(Tl, TQ)
m = max(711)
splay(m)
child_r(m) =T,

parent(root(73)) = m

1.6 Splitting tree

Splitting tree T at key K returns two subtrees 77 and T, by breaking T at the node which contains
K. The operation is accomplished by finding node with K and then returning two trees formed by
breaking left or right link of the new root. If K is not in 7', then the last non-null node found during
the search will be used for splitting.

Input: key K to split on
Output: trees 77,75 obtained by splitting
Amortized Complexity: O(lgn)
split(K)

find(K') {moves K to root}

T; = root(T)

Ty = child_r(root(T"))

child_r(root(7")) = null

parent(root(75)) = null

return [T}, T5]

1.7 Inserting key

Inserting key K goes by splitting 7" on K (which returns two subtrees 77 and 7T5), and then replacing
T with a new root containing K and left/right subtrees 77 and T5. Since K does not exist in T,
splitting is performed on the last non-null node found during the search.

Input: key K to insert into tree T’
Output: T with key K
Amortized Complexity: O(lgn)
insert(K)
[T1, To] = split(K)
key(root(T)) = K
child_I(root(T")) = T1, parent(17) = root(T)
child_r(root(T")) = T, parent(T3) = root(T")

www.alepho.com 8

1.8 Deleting key
Deleting key K goes by finding K (splaying moves it to root) and then replacing 7" by joining ¢;(r(T))
and ¢, (r(T)).

Input: key K to delete from tree T’
Output: tree T without key K
Amortized Complexity: O(lgn)
delete(K)

find(K)

join(child_I(root(T")), child_r(root(T")))

1.9 Amortized complexity

For each z € T of splay tree T', define it’s size as s(z) = >, . w(y), where T, is subtree rooted at x.
Then, let’s define rank of x as A(x) = log s(x). Finally, define potential of T" as ®(T') = > . A(x).

Lemma 1.1. The amortized time to splay tree with root r(7") at node z is

& = 3A(M(T)) = A(@)) +1=0 (10g %)

Proof Sece [4] for the proof. QED

For a sequence of m accesses on n-node splay tree, the potential decrease is ®,, — &3 where

:gA Zlogs Zlog<z >)gglog<§w<j>>

JET;

Oy = log | D w(j) | =) logu(i)

jeTm

with 7} as subtree at ¢-th node before splaying and 7]" as subtree at i-th node after m-th splay

operation. Thus,
—(I>0<ZlogW Zlogw Zlog

where W =>"" w(i).

Let’s apply the obtained results to the tree operations. For € T denote with x, and z, predecessor
and successor of x.

Theorem 1.2. The amortized time of search operation for x = find(K) is

{SIOg)+1 xeTl

w
3log ey T LT ET

Proof If x € T, by lemma | the splaying time for node z is 3 log S(T((T))) +1 < 3log X @ T 1, where
W = s(r(T)),s(z) > w(x). If ¢ T, then either z, or xs is in T, so s(z) > min{w(z,), w(zs)} and
thus splaying time is 3 log L)} + 1. QED

min{w(zp),w(xs

www.alepho.com 9

Theorem 1.3. The amortized time of join operation is

3log +0(1)

w(zx)

where = max T].

Proof The bound on join is immediate from the bound on find - the splaying time is at most

310g) + 1. The increase in potential caused by linking 77 and 75 is log% S(MTZ)
(because W = s(T1) + s(13)). QED

Theorem 1.4. The amortized time of split operation is

3log -)—1—0(),z eT
BIOgL(}—l—O(l),ngT

min{w(zp),w(zs)
where z is node such that k(z) = K.

Proof Since the searching operation is the only non-constant time operation, then amortized time of
split is same as of find. QED

Theorem 1.5. The amortized time of insert operation is

W —w(x)

3log min {w(z,), w(zs)}

+ log

w
w(@) + O(1)

where z is such that k(z) = K.
Proof Follows from the complexity of finding a key. QED

Theorem 1.6. The amortized time od delete operation is

W —w(z)

3log ——
w(xy)

+ 3log +O(1)

w
w(x)
Proof Result follows from the bounds on find and join operations. QED

Theorem 1.7. The amortized time of search operation for z = find(K) is O(lgn), where n = |T'| is
number of nodes in 7.

Proof Assigning w(z) = 1/n in theorem [1.2] the proof follows. QED

1.10 Use cases

e Most Recently Used cache

www.alepho.com 10

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi
[3] Robert Sedgewick: Algorithms
[4] Daniel Dominic Sleator, Robert Endre Tarjan: Self-Adjusting Binary Search Trees

	Splay tree
	Definition
	Rotation, linking, assembling
	Splaying
	Finding key
	Joining trees
	Splitting tree
	Inserting key
	Deleting key
	Amortized complexity
	Use cases

