
www.alepho.com 1

1 Trie

Motivation for this data structure is to enable fast retrieval of strings and their common prefixes.
Operations of interest are: finding, inserting and deleting key.

1.1 Definition

Trie (also known as prefix tree or digital tree) is a tree T defined over alphabet L with the following
properties:

1. There is one root r(T) only.
2. Each node x has arbitrary number of children determined by an array dx[i], where i ∈ L. If x

is leaf, then dx[i] is empty array i.e. it’s length |dx| is zero.
3. For each child dx[i] there is character c(x) ∈ L from alphabet L which determines prefix for x.
4. All leaves and some of internal nodes have associated keys k(x) and corresponding values v(x)

determined by characters on the path from root to x. Position of x defines a key associated
with it by appending all characters on the path from the root to x.

4

7 8

1 2 3 9

5

a d t

c m a o u e

e m y s e

o

n

e t n t

h

Figure 1: Trie with keys/values: ace/7, ammo/11, day/8, do/4, done/2, dust/3, teen/9, teeth/5

In the pseudo code, root of trie is denoted with root(T). Children of a node x are accessed via
child(x, i), i ∈ L; if character i is not present, then the child function returns null. Number of children
of x is given with size(x). Value is accessed with value(x). Keys of x’s children are taken with
key(x, i), i ∈ L. Length of a key w is |w|.

1.2 Finding key

The operation checks if the given key K exists in a trie T . It goes one by one character of K until
the corresponding child exists. If all characters are traversed, then the key K is found; otherwise, the
key does not exist.

www.alepho.com 2

Input: string K to check for existence in a trie T
Output: key/value pair if exist or null if no such key is present
Worst Case Complexity: O(|K|)
find(K)

x = root(T)
for i = 1 to |K|

chr = K[i]
if child(x, chr) 6= null

x = child(x, chr)
else

return null
return (key(x), value(x))

1.3 Inserting

The operation puts a key/value pair (K, V) into trie T . It goes one by one character of K and checks
whether they exist from the root down to leaves. If a character of K is not found on the path, it is
added, as well all remaining characters. If all characters of K exist on the path, then the reached
node is updated with value V .

a d t

c m a o u e

e m y s e

o t n t

h

Figure 2: Inserting key teeth into trie; bold edges are newly created

Input: key/value (K, V) to insert into trie T
Output: T with (K, V)
Worst Case Complexity: O(|K|)
insert(K, V)

if root(T) = null
new root(T)

px = x = root(T)
for i = 1 to |K|

chr = K[i]
x = child(x, chr)

www.alepho.com 3

if x = null
break

px = x
while i <= |K|

chr = K[i]
new x
child(px, chr) = x
new key(px, chr)
px = x

value(x) = V

1.4 Deleting

Deleting removes a key K from a trie T by traversing path of K and removing nodes which do not
have children anymore. It traverses all characters of K from the root down to leaves. Then it goes
back by the same path in bottom-up manner to delete nodes without children. When a non-empty
node is reached, the deletion is over.

a d t

c m a o u e

e m y s e

o t n

Figure 3: Trie after deleting key teeth.

Input: key K to delete in trie T
Output: T without key K and true returned, false if no such key is present
Worst Case Complexity: O(|K|)
delete(K)

if T = null
return false

{stack of children traversed on the path of the given key}
new children
node = root(T)
for i = 1 to size(K)

chr = K[i]
if child(node, chr) 6= null

node = child(node, chr)
push(children, node)

else

www.alepho.com 4

return false
{go up along the path and delete empty nodes}
i = |K|
chr = K[i]
node = pop(children)
do

if size(node) 6= 0
break

delete node
{proceed with node parent}
node = pop(children)
delete key(node, chr)
i = i − 1
if i = 0

break
chr = K[i]

1.5 Worst case complexity

Theorem 1.1. For a trie T and a key K, finding, inserting and deleting the key have complexity
O(|K|),

Proof All operations have loops of size |K|, thus their complexity is O(|K|). QED

1.6 Applications

• Associative array.

• Lexicographic sorting.

• Radix sort.

www.alepho.com 5

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi

[3] Robert Sedgewick: Algorithms

[4] Daniel Dominic Sleator, Robert Endre Tarjan: Self-Adjusting Binary Search Trees

	Trie
	Definition
	Finding key
	Inserting key
	Deleting key
	Worst case complexity
	Use cases

