
www.alepho.com 1

1 Radix tree

Motivation for this data structure is to optimize space usage of nodes, so there are no nodes with only
one child.

1.1 Definition

Radix tree is a trie such that each node which is the only child of its parent is merged to its parent.

7 1 8 4 3

2

9 5

a d tee

ce mmo ay o ust n th

ne

Figure 1: Radix tree with keys/values: ace/7, ammo/1, day/8, do/4, done/2, dust/3, teen/9, teeth/5

In the pseudo code, root of radix tree is denoted with root. For each node x ∈ T , number of children
is given with x.size, keys are accessed via x.key[i] where i = 1, . . . , x.size, value with x.value, children
are found over x.child[c], where c are corresponding keys over the alphabet L. Length of a string w is
length(w). substring(w, i, n) returns substring of w of length n starting from i-th character.

1.2 Search

For a given key K, start from the root by finding node x with a key that matches K’s prefix. While
there is such node, proceed with the procedure on x’s children.

Input: string K to find in radix tree T
Output: value if exists, null if no such key is present
Worst Case Complexity: O(|K|)
find(K)

x := root
len := 0
found := true
while len ≤ length(K) and found = true

found := false
for i := 1 to x.size

k = substring(K, len + 1, length(x.key[i]))
if k = x.key[i]

x := x.child[k]
len := len + length(k)
found := true
break

if found = true

www.alepho.com 2

return x.value
else

return null

1.3 Insert

Inserting key/value pair (K, V) into radix tree T goes by finding corresponding nodes which match a
prefix of K. The rest of K (if any) is put into T .

a d tee

ce mmo ay o ust n th

ne

Figure 2: Inserting teeth into radix tree; bold edge is created

Input: key and value (K, V) to insert into radix tree T
Output: T with added (K, V)
Worst Case Complexity: O(|K|)
insert(K, V)
{find path that matches K’s prefix }
px := x := root
len := 0
found := true
while len ≤ length(K) and found = true

found := false
for i := 1 to x.size

k = substring(K, len + 1, length(x.key[i]))
if k = x.key[i]

px := x
x := x.child[k]
len := len + length(k)
found := true
break

{if K’s suffix which did not match existing keys exists, add it to a new child}
if len < length(K)

new x
k = substring(K, len + 1, length(K)− len)
px.child[k] = x
px.key[px.size + 1] = k
px.size := px.size + 1

x.value := V

www.alepho.com 3

1.4 Delete

To delete key K in radix tree T , find a corresponding node x for the key K; let px be x’s parent. If
x is a leaf, then it is deleted. In case that px after deletion of x remains with only one child y, then
y’s key is appended to px’s.

a d teen

ce mmo ay o ust

Figure 3: Radix tree after deleting key teeth

Input: key K to delete from radix tree T
Output: T with K deleted
Worst Case Complexity: O(|K|)
delete(K)

px := x := root
px key := x key := null
x index := 0
len := 0
found := true
while len < length(K) and found = true

found := false
px key := x key
for i := 1 to x.size

k := substring(K, len + 1, length(x.key[i]))
if k = x.key[i]

px := x
x := x.child[k]
x key = k
x index = i
len := len + length(key)
found := true
break

x.value = null
{in case the key from a leaf is deleted, remove the leaf}
if len = length(K)

delete x
delete px.child[x key]
delete px.child[x index]
px.size := px.size− 1
{in case single child remains, concatenate key with the parent key}
if px.size = 1

y key := px.key[1]
y = px.child[y key]
px key := px key + y key
delete px.key[1]
delete px.child[y key]

www.alepho.com 4

delete y
px.size = 0

1.5 Worst case complexity

Theorem 1.1. For a trie T and a key K, finding, inserting and deleting the key have complexity
O(|K|),

Proof All operations have loops of size |K|, thus their complexity is O(|K|). QED

www.alepho.com 5

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi

[3] Robert Sedgewick: Algorithms

[4] Daniel Dominic Sleator, Robert Endre Tarjan: Self-Adjusting Binary Search Trees

