
www.alepho.com 1

1 B tree

Motivation for B tree is to have data structure that seldom reads or writes keys from the external
memory. When B tree does the read or write, keys are taken in batches, so the communication with
the external memory is minimized. Operations of interest are finding, inserting and deleting key.

1.1 Definition

B tree T with a root rT is a tree with the following properties:

1. Every node x has the following fields:

(a) n – number of keys currently stored in node x.
(b) ki – keys stored in nondecreasing order, so that k1 ≤ k2 ≤ . . . ≤ kn.
(c) l – boolean which is true if x is a leaf and false if x is an internal node.

2. Each internal node x contains n + 1 children c1, c2, . . . , cn+1. Leaf nodes have no children, so
those fields are null.

3. The keys ki separate the ranges of keys stored in each subtree; if mi is any key stored in the
subtree with root ci, 1 ≤ i ≤ n, then

m1 ≤ k1 ≤ m2 ≤ k2 ≤ . . . ≤ kn ≤ mn+1

4. All leaves have the same depth, which is the tree’s height h(T).
5. Each internal node except the root contains at least t − 1 and at most 2t − 1 keys. If tree is

nonempty, then root has at least one key. Integer t ≥ 0 is called node degree.
6. Every node x is read from an external memory by calling read(x) and written by calling write(x).

30 65

10 17 25 38 45 51 59 72 86 95

2 4 5 8 12 13 15 16 19 20 21 22 23 24 27 28 29

Figure 1: Example of B tree of degree t = 4

In the pseudo code, root of B tree T is denoted with root(T), degree of T with degree(T), height with
height(T), number of stored keys in x with keys no(x), i-th child in x with child(i, x), i-th key of x
with key(i, x)

1.2 Searching

To find key K in a subtree at node x, the given node is checked for existence of such key. If not
found, the correct subtree ci is determined to check recursively. Adjacent keys ki and ki+1 such that
ki ≤ K ≤ ki+1 are found, then searching is continued on ci.

Input: key K to find in subtree x with n elements
Output: node which contains K or null

www.alepho.com 2

Complexity: O(log n)
find(K, x)

z = x
while z 6= null

i = 1
while i ≤ keys no(z) and K > key(i, z)

i = i + 1
if i ≤ keys no(z) and K = key(i, z)

break {z found}
if leaf(z)

z = null {z not found}
else

z = read(child(i, z)) {get child from external memory}
return z

Finding index i at node x such that K = ki for the given key K is trivial.

Input: key K to find in node x of degree t
Output: index i of x or null
Complexity: O(t)
index(K, x)

for i = 1 to keys no(x)
if K = key(i, x)

return i
return null

Finding index i such that given key K fits into ci’s keys range is also trivial.

Input: key K to find a corresponding child in node x of degree t
Output: index i such that K belongs to ci(x) or null
Complexity: O(t)
index child(K, x)

for i = 1 to keys no(x)
if key(i, x) ≤ K ≤ key(i + 1, x)

return i
return null

Finding predecessor key of the given ki in node x is finding the right most key in the subtree ci.
Similarly, finding successor key of the given ki in node x is finding the left most key in the subtree
ci+1.

Input: index i of the node x ∈ T , where T has n elements
Output: predecessor kj of ki determined as node y and index j; null if not found
Complexity: O(log n)
predecessor(x, i)

if leaf(x)
y = x
if i = 1

(y, j) = null
else

j = i− 1
else

www.alepho.com 3

x = read(child(i, x))
while not leaf(x)

x = read(child(keys no(x) + 1, x))
y = x, j = keys no(x)

return (y, j)

Input: index i of the node x ∈ T , where T has n elements
Output: successor kj of ki determined as node y and index j; null if not found
Complexity: O(log n)
successor(x, i)

if leaf(x)
y = x
if i = keys no(x)

(y, j) = null
else

j = i + 1
else

x = read(child(i + 1, x))
while not leaf(x)

x = read(child(1, x))
y = x, j = 1

return (y, j)

1.3 Auxiliary node operations

Splitting child node ci of x is an operation performed on a full node ci (n = 2t− 1 where n is number
of keys in ci) and x is not full. Splitting moves central key (the one at t-th place) to the correct place
at the parent. The picture shows splitting node of seven keys to two nodes of three, while key 26 is
moved up.

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

Figure 2: splitting 7-elements node (t = 4)

Input: node x of degree t, with a full child at i-th position
Output: none
Complexity: O(t)
split(x, i)

y = child(i, x) {full node}
new z
leaf(z) = leaf(y)
keys no(z) = degree(T)− 1
{copy second half of keys from y to z}
for j = 1 to degree(T)− 1

key(j, z) = key(degree(T) + j, y)
{copy second half of children from y to z}
if not leaf(y)

www.alepho.com 4

for j = 1 to degree(T)
child(j, z) = child(degree(T) + j, y)

keys no(y) = degree(T)− 1
{move x’s children one place to the right to make room for z}
for j = keys no(x) + 1 downto i + 1

child(j + 1, x) = child(j, x)
child(i + 1, x) = z
{add new key key(t, y) for z into x}
for j = keys no(x) downto i

key(j + 1, x) = key(j, x)
key(i, x) = key(t, y)
keys no(x) = keys no(x) + 1
write(x)
write(y)
write(z)

Merging is an operation reversed to the split operation. For a node x with at least t keys and children
ci and ci+1 with t−1 keys – the key ki of x, all keys kj of ci and all keys kl of ci+1 (where 1 ≤ j, l ≤ t−1)
are collapsed into single ci node with 2t − 1 keys. The picture is analogous to the one of splitting
node.

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

Figure 3: merging two 3-elements nodes (t = 4)

Input: index i of the node x (with degree t) to merge children ci and ci+1

Output: none
Complexity: O(t)
merge(x, i)

y = child(i, x), z = child(i + 1, x)
{move i-th key of x into y}
key(t, y) = key(i, x)
{move the rest of x’s keys to the left}
for j = i to keys no(x)

key(j, x) = key(j + 1, x)
delete key(n(x) + 1, x)
keys no(x) = keys no(x)− 1
{copy z’s keys into y}
for j = 1 to degree(T)− 1

key(t + j, y) = key(j, z)
{copy z’s children into y}
if not leaf(z)

for j = 1 to t
child(t + j, y) = child(j, z)

n(y) = 2 · degree(T)− 1
delete z
{remove link for z from x}
delete child(i + 1, x)

www.alepho.com 5

for j = i + 1 to keys no(x)
child(j, x) = child(j + 1, x)

delete child(keys no(x) + 1, x)
write(x)
write(y)
write(z)

Key can be moved from node a (assuming that number of keys is not less than t) to immediate sibling
b (assuming that number of keys is less than 2t − 1). Let x be their common parent, so a = ci and
b = ci+1 for some i; let pj be the last key in a which is going to be moved. Since

K ≤ pj ≤ ki ≤ L ≤ ki+1 for all K ∈ ci, L ∈ ci+1

pj becomes the new ki and old ki becomes the first key q1 in b. Old keys in b are moved one place to
the right, as well b’s children if b is not leaf. Also if a is not leaf, then it’s child dj can stay on it’s
own place but dj+1 has to be moved. Because new ki has value of pj and new q1 has value of old ki,
without violating B tree properties it can be set e1 = dj+1 (e1 is the first child in b). Since ki is the
only key affected by moving and a = ci, b = ci+1, no child of x is moved to the right. The picture
shows moving of key 36.

. . . 26 38 50 . . .

. . . 27 31 34 36 41 45 46 48 . . .

. . . 26 36 50

. . . 27 31 34 38 41 45 46 48 . . .

Figure 4: moving key 36

Input: node x with a key at i-th place and degree t, its children ci and ci+1 with degrees at least t and at
most 2t− 2, respectively
Output: key from ci moved to parent and parent key moved to ci+1

Complexity: O(t)
move key next(x, i)

a = child(i, x)
b = child(i + 1, x)
{move keys right to make room for the moving one}
for j = 1 to keys no(b)

key(j + 1, b) = key(j, b)
if not leaf(b)

child(j + 1, b) = child(j, b)
keys no(b) = keys no(b) + 1
key(1, b) = key(i, x)
key(i, x) = key(keys no(a) + 1, a)
child(1, b) = child(keys no(a) + 1, a)
delete key(keys no(a) + 1, a)
delete child(keys no(a) + 1, a)
keys no(a) = keys no(a)− 1
write(x)
write(a)
write(b)

www.alepho.com 6

Symetrically, first key from node a = ci, 2 ≤ i ≤ n+1, with the number of keys not less that t, can be moved
to immediate sibling b = ci−1, with the number of keys less that 2t− 1.

Input: node x with key at i-th place and degree t, its children ci and ci−1 with degrees at most 2t− 2 and
at least t, respectively
Output: key from ci+1 moved to parent and parent key moved to ci

Complexity: O(t)
move key prev(x, i)

a = child(i, x)
b = child(i− 1, x)
keys no(b) = keys no(b) + 1
key(keys no(b), b) = key(i, x)
key(i, x) = key(1, a)
child(keys no(b) + 1, b) = child(1, a)
{move keys left to fill empty slot}
for j = 2 to keys no(a)

key(j − 1, a) = key(j, a)
if not leaf(a)

child(j − 1, a) = child(j, a)
delete key(keys no(a) + 1, a)
delete child(keys no(a) + 1, a)
keys no(a) = keys no(a)− 1
write(x)
write(a)
write(b)

1.4 Inserting

Inserting key into B tree is about finding appropriate non-full leaf node to insert the key. To insert
key K into non-full node x, check if x is leaf – if does, find the right place to insert; if not, then insert
into a child where K belongs.

Input: key K to insert into non-full node x ∈ T , where T has n nodes
Output: none
Complexity: O(log n)
insert(x,K)

i = keys no(x)
if leaf(x)
{inserting into leaf is putting key to the proper position}
while i ≥ 1 and K < key(i, x)

key(i + 1, x) = key(i, x)
i = i− 1

key(i + 1, x) = K
keys no(x) = keys no(x) + 1
write(x)

else
while i ≥ 1 and K < key(i, x)

i = i− 1
i = i + 1
read(child(i, x))

www.alepho.com 7

if keys no(child(i, x)) = 2 · degree(T)− 1
split(x, i)
{key from ci moved up to x, so check if K should be moved too}
if K > key(i, x)

i = i + 1
insert(child(i, x),K)

To insert key K into tree T , the algorithm starts at the root. If root is not full, use the above insert
function directly. If not, create new root and split the original root.

Input: key K to insert into T with n elements
Output: none
Complexity: O(log n)
insert(K)

if keys no(root(T)) = 2 · degree(T)− 1
new s
root(T) = s
leaf(s) = false
keys no(s) = 0
child(1, s) = root(T)
split(s, 1)
insert(s,K)

else
insert(root(T),K)

1.5 Deleting

Deleting distinguishes cases on leaves and internal nodes. The following situations are possible for
key K and subtree x:

D1 If the key K is in leaf x, then delete the key K from x.
D2 If the key K is in internal node x, then:

D2.1 If x’s child y that precedes K has at least t keys, then delete the predecessor K ′ (which
is placed in leaf of subtree y) of K and replace K by K ′ in x.

D2.2 Symmetrically, if x’s child z that follows K has at least t keys, then delete the successor
K ′ (which is stored in leaf of subtree z) of K and replace K by K ′ in x.

D2.3 Otherwise, if both y and z have only t − 1 keys, merge K and all of z into y, so that x
loses both K and the pointer to z, and y now contains 2t − 1 keys. Then, delete z and
recursively delete K from y.

D3 If the key K is not present in internal node x, find child ci that contains K. If ci has only t− 1
keys, execute step D3.1 or D3.2 as necessary to guarantee that we descend to a node containing
at least t keys. Then, recursively delete K on ci.

D3.1 If ci has only t− 1 keys but has an immediate sibling with at least t keys, move key from
sibling to ci.

D3.2 If ci and both of ci’s immediate siblings have t− 1 keys, merge ci with one sibling.

Input: key K to delete in subtree x ∈ T , where T has n nodes
Output: node from which the key K is deleted

www.alepho.com 8

Complexity: O(log n)
delete(x,K)

i = index(K, x)
if i 6= null {cases D1 - D2}

if leaf(x) {case D1}
for j = i to keys no(x) + 1

key(j, x) = key(j + 1, x)
delete key(keys no(x) + 1, x)
keys no(x) = keys no(x)− 1
write(x)

else {case D2}
y = child(i, x), z = child(i + 1, x)
if keys no(y) ≥ t {case D2.1}

(a, j) = predecessor(x, i)
K ′ = key(j, a)
delete(y, K ′) {case D1}
key(i, x) = K ′

write(x)
else if keys no(z) ≥ t {case D2.2}

(a, j) = successor(x, i)
K ′ = key(j, a)
delete(z,K ′) {case D1}
key(i, x) = K ′

write(x)
else {case D2.3}

merge(x, i) {moves K from x to y}
delete(y, K) {case D3}

else {case D3}
i = index child(K, x)
if keys no(child(i, x)) = degree(T)− 1

if 1 < i < keys no(x) + 1
if keys no(child(i− 1, x)) ≥ degree(T) {case D3.1}

move key next(x, i− 1)
else if keys no(child(i + 1, x)) ≥ t {case D3.1}

move key prev(x, i + 1)
else {case D3.2}

merge(x, i)
else if i = 1

if keys no(child(i + 1, x)) = degree(T)− 1 {case D3.2}
merge(x, i)

else {case D3.1}
mode key prev(x, i + 1)

else if i = keys no(x) + 1
if keys no(child(i− 1, x)) = degree(T)− 1 {case D3.2}

merge(x, i− 1)
else {case D3.1}

move key next(x, i− 1)
delete(child(i, x),K)

else
delete(child(i, x),K)

return x

www.alepho.com 9

1.6 Worst case complexity

B tree with one, two or three elements has only one (root) node. B tree with four elements can have
at most two nodes, having at least two elements in the child element. If node x has zero keys then it
has one child.

Lemma 1.1. If n ≥ 1 and t ≥ 2, then for every tree with n nodes and degree t, height of the tree is
not greater than logt

n+1
2

.

Theorem 1.2. Complexity of find, insert and delete operations is O(log n).

Proof Follows from lemma 1.1. QED

1.7 Notes

B* tree is a B tree where each node has at least 2
3

full, i.e. contains at least 4
3
t − 1 keys. Inserting

splits two full sibling nodes into three, so each of them is 2
3

full. Since this scheme ensures that storage
utilization is relatively high, height of B* tree is relatively smaller, consequently the find operation
takes less time than in B tree.

Red black tree where each black node absorbs its red children is B tree. Such black node becomes
node with three keys and four children at most.

www.alepho.com 10

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi

[3] Robert Sedgewick: Algorithms

[4] Daniel Dominic Sleator, Robert Endre Tarjan: Self-Adjusting Binary Search Trees

[5] Douglas Comer: The Ubiquitous B-Tree

	B tree
	Definition
	Searching
	Auxiliary node operations
	Inserting
	Deleting
	Worst case complexity
	Notes

