
www.alepho.com 1

1 B+ tree

Motivation for B+ tree is to have data structure with the properties as for B tree, while keys can be
accessed in batches. Thus, for each key the adjacent keys can be found in constant time.

1.1 Definition

B+ tree is B tree with the additional requirements:

1. All keys are stored in the leaves.
2. Leaves form a linked list starting from the leftmost leaf. It is called sequence set.
3. Internal nodes do not necessarily keep all of the keys. Those that are present, separate keys of

the children in the same way as in B tree. They form so called index.

So, while B tree stores keys in all nodes (internal and leaves), B+ tree keeps all keys in leaves and
some of them in internal nodes. In addition, all leaves are linked into one single linked list.

30 65

10 17 25 38 45 51 59 72 86 95

2 4 5 8 10 12 13 15 16 19 20 21 22 23 24 25 27 28 29

Figure 1: Example of B+ tree of degree t = 4

The figure 1 shows an example of B+ tree where 17 is not the key since it is present in an internal
node only, while 10 and 25 are keys which also occur in internal nodes.

In the pseudo code, all notations remain same as for B tree. Additionally, each leaf x has a pointer
next(x) to a next leaf.

1.2 Searching

Starting from the root of a B+ tree, the algorithm finds appropriate child as in the case of B tree. If
key K is found in an internal node, then the search is not stopped, but the appropriate right pointer
is chosen, so the algorithm proceeds down to a leaf.

Input: key K to find in subtree x with n elements
Output: node which contains K or null
Complexity: O(log n)
find(K, x)

z = x
while z 6= null

i = 1
while i ≤ keys no(z) and K > key(i, z)

i = i + 1
if i ≤ keys no(z) and K = key(i, z) and leaf(z)

break {z found}

www.alepho.com 2

if leaf(z)
z = null {z not found}

else
z = read(child(i, z)) {get child from external memory}

return z

From the algorithm follows that it doesn’t matter which keys are stored in internal nodes, as long
they separate keys in leaves in a proper way.

1.3 Auxiliary node operations

Splitting node is performed in a similar manner as in B tree. The difference is that central key is
copied to a parent node and placed in the right sibling. Additionally, the sequence set is updated if
necessary.

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 26 27 31 34 41 45 46 48 . . .

Figure 2: splitting 7-elements node (t = 4), key 26 is copied to the parent

The split method is slightly modified to support copying of the central key to both parent and sibling
node.

Input: node x of degree t, with a full child at i-th position
Output: none
Complexity: O(t)
split(x, i)

y = child(i, x) {full node}
new z
leaf(z) = leaf(y)
keys no(z) = degree(T)− 1
{copy second half of keys from y to z, including central key}
for j = 1 to degree(T)

key(j, z) = key(degree(T)− 1 + j, y)
{copy second half of children from y to z, including central key}
if not leaf(y)

for j = 1 to degree(T) + 1
child(j, z) = child(degree(T)− 1 + j, y)

keys no(y) = degree(T)− 1
{move x’s children one place to the right to make room for z}
for j = keys no(x) + 1 downto i + 1

child(j + 1, x) = child(j, x)
child(i + 1, x) = z
{add new key key(t, y) for z into x}
for j = keys no(x) downto i

key(j + 1, x) = key(j, x)
key(i, x) = key(t, y)
keys no(x) = keys no(x) + 1
{update sequence set if necessary}

www.alepho.com 3

if leaf(y)
next(z) = next(y)
next(y) = next(z)

write(x)
write(y)
write(z)

Merging is similar to the one on B tree except that central key is not copied from parent to the merged
children. Additionally, the sequence set is updated if necessary.

. . . 4 11 26 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

. . . 4 11 38 50 . . .

. . . 6 8 9 18 22 25 27 31 34 41 45 46 48 . . .

Figure 3: merging two 3-elements nodes (t = 4)

Input: index i of the node x (with degree t) to merge children ci and ci+1

Output: none
Complexity: O(t)
merge(x, i)

y = child(i, x), z = child(i + 1, x)
{move i-th key of x into y}
key(t, y) = key(i, x)
{move the rest of x’s keys to the left}
for j = i to keys no(x)

key(j, x) = key(j + 1, x)
delete key(n(x) + 1, x)
keys no(x) = keys no(x)− 1
{copy z’s keys into y}
for j = 1 to degree(T)− 1

key(t + j, y) = key(j, z)
{copy z’s children into y}
if not leaf(z)

for j = 1 to t
child(t + j, y) = child(j, z)

n(y) = 2 · degree(T)− 1
{update sequence set if necessary}
if leaf(y)

next(y) = next(z)
delete z
{remove link for z from x}
delete child(i + 1, x)
for j = i + 1 to keys no(x)

child(j, x) = child(j + 1, x)
delete child(keys no(x) + 1, x)
write(x)
write(y)
write(z)

Moving key K ∈ ci is performed in a manner similar to the B tree’s move. K replaces the correspond-

www.alepho.com 4

ing parent key which splits ci and ci+1 and K is copied to ci+1 to be it’s first key.

. . . 26 38 50 . . .

. . . 27 31 34 36 41 45 46 48 . . .

. . . 26 36 50

. . . 27 31 34 36 41 45 46 48 . . .

Figure 4: moving key 36

Input: node x with a key at i-th place and degree t, its children ci and ci+1 with degrees at least t and at
most 2t− 2, respectively
Output: key from ci moved to parent and parent key moved to ci+1

Complexity: O(t)
move key next(x, i)

a = child(i, x)
b = child(i + 1, x)
{move keys right to make room for the moving one}
for j = 1 to keys no(b)

key(j + 1, b) = key(j, b)
if not leaf(b)

child(j + 1, b) = child(j, b)
keys no(b) = keys no(b) + 1
key(1, b) = key(i, x) = key(keys no(a) + 1, a)
child(1, b) = child(keys no(a) + 1, a)
delete key(keys no(a) + 1, a)
delete child(keys no(a) + 1, a)
keys no(a) = keys no(a)− 1
write(x)
write(a)
write(b)

Input: node x with key at i-th place and degree t, its children ci and ci−1 with degrees at most 2t− 2 and
at least t, respectively
Output: key from ci+1 moved to parent and parent key moved to ci

Complexity: O(t)
move key prev(x, i)

a = child(i, x)
b = child(i− 1, x)
keys no(b) = keys no(b) + 1
key(keys no(b), b) = key(i, x) = key(1, a)
child(keys no(b) + 1, b) = child(1, a)
{move keys left to fill empty slot}
for j = 2 to keys no(a)

key(j − 1, a) = key(j, a)
if not leaf(a)

child(j − 1, a) = child(j, a)
delete key(keys no(a) + 1, a)
delete child(keys no(a) + 1, a)
keys no(a) = keys no(a)− 1
write(x)
write(a)
write(b)

www.alepho.com 5

1.4 Insert

Inserting node is exactly the same as for B tree, except the modified split for B+ tree is used.

1.5 Delete

Deleting key K is easier than in case of B tree, because all keys are in leaves. If K is in the index only,
it is not deleted, because it keeps to separate keys in the index in a proper way. Thus, the following
cases are distinguished:

D1 If the key K is in leaf x, then delete the key K from x.
D2 Find child ci that contains K. If ci has only t − 1 keys, execute step D2.1 or D2.2 as necessary

to guarantee that we descend to a node containing at least t keys. Then, recursively delete K
on ci.

D2.1 If ci has only t− 1 keys but has an immediate sibling with at least t keys, move key from
sibling to ci.

D2.2 If ci and both of ci’s immediate siblings have t− 1 keys, merge ci with one sibling.

Input: key K to delete in subtree x ∈ T , where T has n nodes
Output: node from which the key K is deleted
Complexity: O(log n)
delete(x,K)

i = index(K, x)
if i 6= null

if leaf(x) {case D1}
for j = i to keys no(x) + 1

key(j, x) = key(j + 1, x)
delete key(keys no(x) + 1, x)
keys no(x) = keys no(x)− 1
write(x)

else {case D2}
i = index child(K, x)
if keys no(child(i, x)) = degree(T)− 1

if 1 < i < keys no(x) + 1
if keys no(child(i− 1, x)) ≥ degree(T) {case D2.1}

move key next(x, i− 1)
else if keys no(child(i + 1, x)) ≥ degree(T) {case D2.1}

move key prev(x, i + 1)
else {case D2.2}

merge(x, i)
else if i = 1

if keys no(child(i + 1, x)) = degree(T)− 1 {case D2.2}
merge(x, i)

else {case D2.1}
mode key prev(x, i + 1)

else if i = keys no(x) + 1
if keys no(child(i− 1, x)) = degree(T)− 1 {case D2.2}

www.alepho.com 6

merge(x, i− 1)
else {case D2.1}

move key next(x, i− 1)
delete(child(i, x),K)

else
delete(child(i, x),K)

return x

www.alepho.com 7

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi

[3] Robert Sedgewick: Algorithms

[4] Daniel Dominic Sleator, Robert Endre Tarjan: Self-Adjusting Binary Search Trees

[5] Douglas Comer: The Ubiquitous B-Tree

	B+ tree
	Definition
	Searching
	Auxiliary node operations
	Insert
	Delete

