
www.alepho.com 1

1 AVL tree

If for each node difference between left and right subtree height is less or equal than 1, such binary
tree is called AVL tree. For n nodes, an AVL tree has height of 1.44 lg n. For that reason, finding,
inserting or deleting node is of O(log n) complexity. The presented algorithms assume that all keys
stored in the tree are different.

The following conventions for the tree T with n nodes are used: rt(T ) – T ’s root, l(x) – left child of
the node x, r(x) – x’s right child, p(x) – x’s parent, b(x) – balance factor of the node x (i.e. difference
between left and right subtree), k(x) – key stored in node x. If node x has no left and/or right child,
then l(x) and/or r(x) is null.

1.1 Finding node

Finding a node with a given key K starts from the root as current node. K is compared with a key
of each current node. If it is less than it’s value, it continues within left subtree; if it’s greater, then
proceeds within right subtree.

Complexity: O(lg n)
Input: key K to find
Output: node with key K or null (if K is not in T or tree is empty)
find(K)

x = rt(T )
if x = null

return null
while x 6= null

if K < k(x)
x = l(x)

else if K > k(x)
x = r(x)

else
return x

return null

To find a predecessor of a given node x, one should get the most right descendant of x’s left child.
From this definition, it follows that predecessor has no right child (otherwise, that child would be the
predecessor).

Complexity: O(lg n)
Input: node x to find predecessor
Output: predecessor node or null (if x is null or has no predecessor or tree is empty)
predecessor(x)

if x = null or rt(T ) = null or l(x) = null
return null

xl = l(x)
while xl 6= null

xl = r(xl)
return xl

To find a successor of a given node x, one should get the most left descendant of x’s right child.



www.alepho.com 2

From this definition, it follows that successor has no left child (otherwise, that child would be the
successor).

Complexity: O(lg n)
Input: node x to find successor
Output: successor node or null (if x is null or has no successor or tree is empty)
successor(x)

if x = null or rt(T ) = null or r(x) = null
return null

xr = r(x)
while xr 6= null

xr = l(xr)
return xr

One can easily check if a node is descendant of an another node.

Complexity: O(lg n)
Input: ancestor a and descendant d
Output: true or false
is left descendant(a, d)

while p(d) 6= a
d = p(d)

if d = l(a)
return true

else
return false

1.2 Rotations

Rotations reconnect nodes as described below. There are no changes on balance factors, they are
fixed in the appropriate operations.

Left rotation reconnects nodes, such that rotated node x get it’s right child for the parent and left
child of r(x) becomes right child of x. Node 2 in the following figure is rotated to the left:

Figure 1: left rotation of node 2

Complexity: O(1)
Input: node x to rotate
Output: none
rotate left(x)

xp = p(x)



www.alepho.com 3

xr = r(x)
xrl = l(r(x))
p(xr) = xp
p(x) = xr
if xrl 6= null

p(xrl) = x
r(x) = xrl
l(xr) = x
if xp 6= null

if x = l(xp)
l(xp) = xr

else if x = r(xp)
r(xp) = xr

if rt(T ) = x
rt(T ) = p(x)

Right rotation reconnects nodes, such that rotated node x get it’s left child for the parent and right
child of l(x) becomes left child of x. Node 5 in the following figure is rotated to the right:

Figure 2: right rotation of node 5

Complexity: O(1)
Input: node x to rotate
Output: none
rotate right(x)

xp = p(x)
xl = l(x)
xlr = r(l(x))
p(xl) = xp
p(x) = xl
if xlr 6= null

p(xlr) = x
l(x) = xlr
r(xl) = x
if xp 6= null

if x = l(xp)
l(xp) = xl

else if x = r(xp)
r(xp) = xl

if rt(T ) = x
rt(T ) = p(x)



www.alepho.com 4

1.3 Inserting node

Inserting node is to put the new key K into tree T by going to the left subtree if K is less than key
of the current node, and to the right if K is greater than key of the current node. When a node is
inserted, balance factors of some of the traversed nodes can be changed. For that reason, those nodes
have to be rebalanced.

While searching correct place to insert new node, last node P with non-zero balance is memorized. If
such node does not exist, then no balancing is necessary after inserting the new node. Subtree at P
can become corrupted after inserting new node and no other tree except this one can be corrupted.
Balances of all nodes from the new one until P are modified. Rotations are made in constant time,
so total time for inserting is O(lg n).

Let A be the last node with non-zero balance, let the new node be inserted into left subtree of A, let
be B = l(A), C = l(B), D = r(B), X = r(A) and h() function which returns height of a subtree.

First case is when inserted node is left descendant of B. Then, b(A) = −2, b(B) = −1, so h(D) =
h(X), h(C) = h(D)+1 ⇒ h(C) = h(X)+1. If A is right rotated, then B is parent of A, D and X are
children of A. It follows that b(A) = 0 since h(D) = h(X) and b(B) = 0 because h(C) = h(X) + 1.

Figure 3: L1 case fixed with r(A)

Second, third and fourth case are when inserted node is right descendant of B. Three possibilities
are available: b(A) = −2, b(B) = +1, b(D) = −1, b(A) = −2, b(B) = +1, b(D) = +1 or b(A) =
−2, b(B) = +1, b(D) = 0, depending of where the node inserted (left or right subtree of D). Denote
Dl = l(D), Dr = r(D), and consider the second case b(D) = −1. It follows that b(B) = 1 ⇒
h(D) = h(C) + 1, b(D) = −1 ⇒ h(Dl) = h(Dr) + 1, h(D) = h(Dl) + 1, so h(Dl) = h(C). Also,
h(X) = h(B) − 2 = h(D) − 1 = h(Dl) = h(Dr) + 1. Therefore, h(Dl) = h(C) ⇒ b(B) = 0;h(X) =
h(Dr) + 1 ⇒ b(A) = +1;h(Dl) = h(X) ⇒ b(D) = 0.

Figure 4: L2, L3, L4 cases fixed with l(B), r(A)



www.alepho.com 5

For a third case, rotations are the same and calculus is similar: h(C) = h(Dr) = h(Dl) + 1, h(X) =
h(Dr) ⇒ b(B) = −1, b(A) = 0, b(D) = 0. Fourth case is same as this one. Let’s write down these
cases symbolically:

L1 b(A) = −2, b(B) = −1, r(A) ⇒ b(A) = 0, b(B) = 0
L2 b(A) = −2, b(B) = +1, b(D) = −1 ⇒ l(B), r(A) ⇒ b(A) = +1, b(B) = 0, b(D) = 0
L3 b(A) = −2, b(B) = +1, b(D) = +1 ⇒ l(B), r(A) ⇒ b(A) = 0, b(B) = −1, b(D) = 0
L4 b(A) = −2, b(B) = +1, b(D) = 0 ⇒ l(B), r(A) ⇒ b(A) = 0, b(B) = 0, b(D) = 0

Symmetric cases come when inserted node is in the right subtree of A.

R1 b(A) = +2, b(B) = +1 ⇒ l(A) ⇒ b(A) = 0, b(B) = 0
R2 b(A) = +2, b(B) = −1, b(D) = +1 ⇒ r(B), l(A) ⇒ b(A) = −1, b(B) = 0, b(D) = 0
R3 b(A) = +2, b(B) = −1, b(D) = −1 ⇒ r(B), l(A) ⇒ b(A) = 0, b(B) = +1, b(D) = 0
R4 b(A) = +2, b(B) = −1, b(D) = 0 ⇒ r(B), l(A) ⇒ b(A) = 0, b(B) = 0, b(D) = 0

The following functions perform cases L1-L3, R1-R3.

Complexity: O(1)
Input: subtree’s root x to perform case L1
Output: none
case l1(x)

A = x,B = l(A)
rotate right(A)
b(A) = 0, b(B) = 0

Complexity: O(1)
Input: subtree’s root x to perform case L2
Output: none
case l2(x)

A = x,B = l(A), D = r(B)
rotate left(B)
rotate right(A)
b(A) = +1, b(B) = 0, b(D) = 0

Complexity: O(1)
Input: subtree’s root x to perform case L3
Output: none
case l3(x)

A = x,B = l(A), D = r(B)
rotate left(B)
rotate right(A)
b(A) = 0, b(B) = −1, b(D) = 0

Complexity: O(1)
Input: subtree’s root x to perform case L4
Output: none
case l4(x)

A = x,B = l(A), D = r(B)
rotate left(B)
rotate right(A)



www.alepho.com 6

b(A) = 0, b(B) = 0, b(D) = 0

Complexity: O(1)
Input: subtree’s root x to perform case R1
Output: none
case r1(x)

A = x,B = r(A)
rotate left(A)
b(A) = 0, b(B) = 0

Complexity: O(1)
Input: subtree’s root x to perform case R2
Output: none
case r2(x)

A = x,B = r(A), D = l(B)
rotate right(B)
rotate left(A)
b(A) = −1, b(B) = 0, b(D) = 0

Complexity: O(1)
Input: subtree’s root x to perform case R3
Output: none
case r3(x)

A = x,B = r(A), D = l(B)
rotate right(B)
rotate left(A)
b(A) = 0, b(B) = +1, b(D) = 0

Complexity: O(1)
Input: subtree’s root x to perform case R4
Output: none
case r4(x)

A = x,B = r(A), D = l(B)
rotate right(B)
rotate left(A)
b(A) = 0, b(B) = 0, b(D) = 0

Inserting searches for an appropriate leaf node to put the key K into one of it’s children. Then balance
factors of the traversed nodes are fixed.

Complexity: O(lg n)
Input: key K to insert
Output: none
insert(K)

new z
k(z) = K
{empty tree is trivial case}
if rt(T ) = null

rt(T ) = z
return

{not empty tree}



www.alepho.com 7

c = rt(T )
P = null {last ancestor with non-zero balance}
{insert z into an empty place}
while true

if b(c) 6= 0
P = c

if K < k(c)
if l(c) = null

l(c) = z
p(z) = c
break

c = l(c)
else

if r(c) = null
r(c) = z
p(z) = c
break

c = r(c)
if P = null or b(P ) = 0 {just modify balances}

c = z
do
if c = l(p(c))

b(p(c)) = b(p(c))− 1
else

b(p(c)) = b(p(c)) + 1
c = p(c)

while c 6= rt(T )
return

{modify balances from z to P}
c = z
do
if c = l(p(c))

b(p(c)) = b(p(c))− 1
else

b(p(c)) = b(p(c)) + 1
c = p(c)

while c 6= P
{fix balance factors}
if is left descendant(P, c) = true

{node inserted to the left}
A = P,B = l(P ), D = r(B)
if b(A) = −2 and b(B) = −1

case l1(A)
else if b(A) = −2 and b(B) = +1 and b(D) = −1

case l2(A)
else if b(A) = −2 and b(B) = +1 and b(D) = +1

case l3(A)
else if b(A) = −2 and b(B) = +1 and b(D) = 0

case l4(A)
else

{node inserted to the right}
A = P,B = r(P ), D = l(B)



www.alepho.com 8

if b(A) = +2 and b(B) = +1
case r1(A)

else if b(A) = +2 and b(B) = −1 and b(D) = +1
case r2(A)

else if b(A) = +2 and b(B) = −1 and b(D) = −1
case r3(A)

else if b(A) = +2 and b(B) = −1 and b(D) = 0
case r4(A)

1.4 Deleting node

When a node is deleted, heights of subtrees containing that node may be changed. For that reason,
rebalancing has to be performed of all nodes from a deleted one until the root. Deleting Z if both
children are null is removing it and checking all parents for balances. If some of the Z’s children isn’t
null, then deleting it is replacing it with predecessor or successor node (call it N). N ’s parent A takes
N ’s single child B as a new child instead of N , Z is replaced with N . The procedure is shown on the
figure 5.

Figure 5: Deleting node Z by replacing it with successor N

Nodes starting from A should be checked for balances and rotated if necessary. If A’s height has not
changed (balance is 0), the deleting procedure ends; otherwise, A becomes A’s parent and procedure
is repeated. There are three cases on deleting:

D1 b(A) = 0, after deleting b(A) = ±1 and height of A-tree is not changed, so the deleting procedure
is ended.

D2 b(A) = ±1, after deleting b(A) = 0, so there’s no need for rotations; but height of trees containing
A is changed, so procedure of balancing continues on parent of A.

D3 b(A) = ±1, after deleting b(A) = ±2, so rotation are made; height of trees containing A is
changed, so procedure of balancing continues on parent of A. L1-L5 and R1-R5 cases are
possible here.

Additional cases on deleting are:



www.alepho.com 9

L5 b(A) = −2, b(B) = 0 ⇒ r(A) ⇒ b(A) = −1, b(B) = +1
R5 b(A) = +2, b(B) = 0 ⇒ l(A) ⇒ b(A) = +1, b(B) = −1

Complexity: O(1)
Input: subtree’s root x to perform case L5
Output: none
case l5(x)

A = x,B = l(A)
rotate right(A)
b(A) = −1, b(B) = +1

Complexity: O(1)
Input: subtree’s root x to perform case R5
Output: none
case r5(x)

A = x,B = r(A)
rotate left(A)
b(A) = +1, b(B) = −1

Rotations are made in O(lg n) time, so as finding node to delete, so total time for deleting is O(lg n).

Complexity: O(lg n) where n is number of elements in the tree
Input: key K to delete
Output: none
remove(K)

if rt(T ) = null
return

Z = find(K)
if Z = null

return
if Z = rt(T )

delete rt(T )
return

Ns = successor(Z), Np = predecessor(Z)
A = null {parent of Ns or Np }
if Ns = null and Np = null

A = p(Z)
if Z = l(A)

b(A) = b(A) + 1
l(A) = null

else if Z = r(A)
b(A) = b(A)− 1
r(A) = null

delete Z
else if Ns 6= null

k(Z) = k(Ns)
A = p(Ns) {could be also A = p(Z) }
if Ns = l(A) {successor is not sibling of Z}

if r(Ns) 6= null {connect A with single child (if exists)}
l(A) = r(Ns)
p(r(Ns)) = A

else
delete l(A)



www.alepho.com 10

b(A) = b(A) + 1
else if Ns = r(A) {successor is sibling of Z}

if r(Ns) 6= null
r(A) = r(Ns)
p(r(Ns)) = A

else
delete r(A)

b(A) = b(A)− 1
delete Ns

else if Np 6= null
k(Z) = k(Np)
A = p(Np) {could be also A = p(Z) }
if Np = r(A) {successor is not sibling of Z}

if l(Np) 6= null {connect A with single child (if exists)}
r(A) = l(Np)
p(l(Np)) = A

else
delete r(A)

b(A) = b(A)− 1
else if Np = l(A) {successor is sibling of Z}

if l(Np) 6= null
l(A) = l(Np)
p(l(Np)) = A

else
delete l(A)

b(A) = b(A) + 1
delete Np

{correct balances along the tree starting from parent}
while A 6= null

if b(A) = ±1 {case D1}
break

else if b(A) = 0 {case D2}
if p(A) 6= null

if A = l(p(A))
b(p(A)) = b(p(A)) + 1

else if A = r(p(A))
b(p(A)) = b(p(A))− 1

else if b(A) = +2 {cases R1 - R5}
B = r(A)
if b(B) = +1

case r1(A)
else if b(B) = −1

D = l(B)
if b(D) = +1

case r2(A)
else if b(D) = −1

case r3(A)
else if b(D) = 0

case r4(A)
else if b(B) = 0

case r5(A)
else if b(A) = −2 {cases L1 - L5}



www.alepho.com 11

B = l(A)
if b(B) = −1

case l1(A)
else if b(B) = +1

D = r(B)
if b(D) = −1

case l2(A)
else if b(D) = +1

case l3(A)
else if b(D) = 0

case l4(A)
else if b(B) = 0

case l5(A)
A = p(A)



www.alepho.com 12

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction to
Algorithms; Second Edition

[2] Miodrag Zivkovic: Algoritmi

[3] Robert Sedgewick: Algorithms


	AVL tree
	Finding node
	Rotations
	Inserting node
	Deleting node


